
Supplementary of Learning Compact Representations
for LiDAR Completion and Generation

Yuwen Xiong1,2 Wei-Chiu Ma1,3 Jingkang Wang1,2 Raquel Urtasun1,2

1Waabi 2University of Toronto 3Massachusetts Institute of Technology

1. Code Identification

For street scenes in Birds-Eye-View (BEV), we em-
pirically observe that the semantic meaning of the codes
aligned well with the actors spatially. For example, we can
refer object (e.g., car) location from ground-truth labels or
visual check and find the corresponding codes on the code
map. The meaning of the codes can then be identified for
controllable generation and manipulation. In this paper, we
mainly leverage this property to perform scene manipula-
tion by using a copy-paste mechanism for existing code and
find it works properly. How to find the meaning of the codes
for background/unlabeled effectively is still an open ques-
tion. We leave this question and more potential use cases
for the identified codes as future works.

2. Experimental Details

In this section, we discuss the experimental details for
the results presented in the main paper.

PanadSet: PandaSet is a self-driving dataset introduced
in recent work [6]. It contains 103 driving sequences cap-
tured in San Francisco Bay area with 8 seconds (80 frames,
sampled at 10Hz) each. We split it into 73 and 30 se-
quences as training and validation sets by considering both
geographic locations and time (so that data collected at dif-
ferent locations/timespan are in different sets). Specifically,
we select the sequences 13 − 14, 57 − 79, 86 − 94 and
149 as the validation set and put the rest into the training
set. We set the region of interest for the point cloud to
[0, 80]× [−40, 40] meters.

Two-stage PIXOR: Two-stage PIXOR can be seen as a
variant of the original PIXOR proposed by Yang et al. [7].
We made the following modifications to improve the per-
formance to be comparable with the state-of-the-art 3D de-
tectors:

1. We use multi-scale deformable self-attention [8] in-
stead of the upsampling deconvolution layers after the

ResNet backbone to aggregate information from dif-
ferent scales and enhance the feature extraction; and
output the feature maps with 1/4 resolution the same
as PIXOR.

2. We use the output from the dense detector header as the
first-stage results. The top 500 bounding boxes after
NMS are used as region proposals for the second stage.
The 2D IoU threshold for NMS is set to 0.7

3. We use RotatedRoIAlign [5] to extract 3 × 3 RoI fea-
tures from the feature map in the second-stage header;
and apply two self-attention layers on features within
each RoI and features between each RoI, respectively.
Two MLPs are used to predict the classification score
and box refinement for the region proposals.

4. We use DETR-like set-based loss with bipartite match-
ing for both stages. An additional IoU loss is used for
bounding box regression besides the smooth L1 loss.

LiDAR Simulation: We re-implement the state-of-the-art
LiDAR simulation approach LiDARsim [2] for the genera-
tion of sim data with 512 laser beams. We only focus on the
physics based simulation component based on OptiX ray
tracing engine [3] and skip the ML ray-drop network.

We first create the asset bank with log-wise surfel aggre-
gation following [2]. For background assets, we aggregate
the points across all the frames in one snippet and remove
all actors using 3D bounding box annotations. For dynamic
actors, we aggregate the LiDAR points inside the bound-
ing boxes in the object-centric coordinate. We then esti-
mate per-point normals from 200 nearest neighbors with
a radius of 20cm and orient the normals upwards for flat
ground reconstruction. We downsample the LiDAR points
into 4cm voxels and create per-point triangle faces (radius
5cm) according to the estimated normals. Given the asset
bank, we place the background and all actors in its origi-
nal locations and transform the scene to the LiDAR coor-
dinate for ray-triangle intersection computation. For Pan-
daset, we set the sensor intrinsics (e.g., beam angle, az-
imuth resolution, etc) based on the public documents and

1



Method MMDBEV ↓ JSDBEV ↓
LiDAR GAN [1] 3.06× 10−3 -
LiDAR VAE [1] 1.00× 10−3 0.161

Projected GAN [4] 3.47× 10−4 0.085
LiDARGen [9] 3.87× 10−4 0.067

Ours 1.96× 10−4 0.071

Table 1. Quantitative results on KITTI-360. Baseline results are
from [9].

raw LiDAR information 1. To produce simulated LiDAR
scans with 512 beams, we linearly interpolate the beam an-
gle from 14.870° to -30.166°, where laser ID 0, 8, · · · 504
corresponds to the original 64 beams (14.870° to -24.909°)
for Pandar64. To reduce the domain gap between simulated
512-beam LiDAR data and real data, we replace simulated
64-beam LiDAR points (laser IDs 0, 8, · · · 504, 64 beams in
total) with the original real LiDAR points.

Metrics on KITTI-360: The Maximum-Mean Discrep-
ancy (MMD) and Jensen–Shannon divergence (JSD) met-
rics [9] measure the distribution between the generated re-
sults and the real data with a 100×100 2D histogram along
the ground plane. In the main paper, we use occupancy
as the measurement for all generation methods when doing
histogram bin count for point clouds from real data. We now
try to measure the point-based distribution by lifting our re-
sults with point duplication. Specifically, we calculate a co-
efficient for each bin used for the histogram bin count by
performing an element-wise division of the 2D histogram
matrix calculated on KITTI-360 training data with the his-
togram calculated on our generated data. We use the coeffi-
cients to “duplicate” the points in each voxel and match the
point distribution. Our method still performs well in this
case, as shown in Tab. 1.

3. Ablation Studies

We now show ablation studies on the design choices de-
scribed for our model. Specifically, as it is easier to observe
the difference between the generation results and the real
data, we show qualitative results on KITTI-360.

Free space suppression: In Fig. 1, we show generation
results without code restriction (i.e., every code is available
to choose, including the [BLANK] codes). In this situation,
we do not perform any free space suppression, and we can
see that the generation is clearly collapsed, indicating the
effectiveness of our free space suppression.

1https://github.com/scaleapi/pandaset-devkit/
issues/67

Voxel size: We empirically find that the spatial dimension
that each code represents should not be too large. In Fig. 2,
we show qualitative results of downsampling 16× for the
model before vector quantization, leading to a 2.5 × 2.5 m
patch for each code. We can see that the results become
noisy as 2.5 × 2.5 m patches contain too many geometry
details that cannot be preserved in a single discrete code.
We thus stay with 8× downsampling for our model.

Codebook (re)-initialization: We also notice that the
codebook initialization and reinitialization matter when
learning the codebook. We train a model with conventional
uniform initialization and no reinitialization. The code uti-
lization rate at the end of codebook learning is 12.1%, sig-
nificantly lower than our implementation with reinitializa-
tion which can achieve 99%+. As the qualitative results are
shown in Fig. 3, it is clear that the limited number of active
codes leads to degenerated results.

4. Visualization
We now show more visual examples on PandaSet and

KITTI360.

Sparse-to-dense results We show more sparse-to-dense
results on PandaSet in Fig. 4; we also include a video for
results with a full sequence in the supplementary.

Unconditional generation results: We show more re-
sults compared with baselines on KITTI-360 in Fig. 5. Fur-
thermore, we also show KITTI-360 results with the gen-
eration process in Fig. 6, and PandaSet results in Fig. 7,
respectively.

Conditional generation results: We show KITTI-360 re-
sults in Fig. 8, and PandaSet results in Fig. 9 on PandaSet,
respectively. The red points indicate the visible part as the
condition for the model, and our model can perform reason-
able extrapolation based on that.

Manipulation results: Lastly, we show more manipula-
tion results on KITTI-360 and PandaSet in Fig. 11. The
learned codes show high spatial alignment with the objects,
so we can manipulate the LiDAR sweeps by changing the
code placement on the code map.

Missing part in completion: UltraLiDAR is designed to
densify the input point clouds while maintaining realistic
occlusion patterns such that the data appear as if it were
captured by a LiDAR sensor with a higher beam count. The
large missing volume in Fig. 3 in the main paper is due to
uphill/downhill geometry of the road, which results in oc-
clusion for any LiDAR regardless of their beam count. The
RGB camera images shown in Fig. 10 provides a clearer
illustration.

https://github.com/scaleapi/pandaset-devkit/issues/67
https://github.com/scaleapi/pandaset-devkit/issues/67


Figure 1. Results without free space suppression. Most space is now empty; the model can no longer generate structured layouts.

Figure 2. Results with larger patch size for each code. The point clouds become noisy as the patch size for each code is too large, and
fine-grained geometry cannot be preserved anymore.

References
[1] Lucas Caccia, Herke Van Hoof, Aaron Courville, and Joelle

Pineau. Deep generative modeling of lidar data. In 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5034–5040. IEEE, 2019. 2

[2] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,
Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,
Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic li-
dar simulation by leveraging the real world. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11167–11176, 2020. 1

[3] Steven G Parker, James Bigler, Andreas Dietrich, Heiko
Friedrich, Jared Hoberock, David Luebke, David McAllister,
Morgan McGuire, Keith Morley, Austin Robison, et al. Optix:
a general purpose ray tracing engine. ACM TOG, 2010. 1

[4] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger.
Projected gans converge faster. Advances in Neural Informa-
tion Processing Systems, 34:17480–17492, 2021. 2

[5] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 1

[6] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang,
Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun
Jiang, et al. Pandaset: Advanced sensor suite dataset for

autonomous driving. In 2021 IEEE International Intelli-
gent Transportation Systems Conference (ITSC), pages 3095–
3101. IEEE, 2021. 1

[7] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time
3d object detection from point clouds. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 7652–7660, 2018. 1

[8] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1

[9] Vlas Zyrianov, Xiyue Zhu, and Shenlong Wang. Learning to
generate realistic lidar point clouds. In Proceedings of the
European Conference on Computer Vision (ECCV), October
2022. 2

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


Figure 3. Results without codebook reinitialization. We observe similar issue as in Fig. 2. The model needs to use a limited number of
codes to perform reconstruction/generation, leading to degenerated results.

Figure 4. Sparse-to-Dense results on PandaSet. The first and third columns are real sparse data, and the second and fourth columns are
our densified results.



Figure 5. Qualitative comparison against baselines on unconditional LiDAR generation. Our model consistently outperforms the
baselines and shows results highly similar to the real data.



Figure 6. Unconditional generation results on KITTI-360. We show a step-by-step generation process starting from a blank canvas in
the third column.

Figure 7. Unconditional generation results on Pandaset.



Figure 8. Conditional generation results on KITTI-360. The red points are the visible input to the model.



Figure 9. Conditional generation results on Pandaset. The red points are the visible input to the model.

Original Sparse LiDAR Our Dense LiDAR Original Sparse LiDAR Our Dense LiDAROriginal Sparse LiDAR Our Dense LiDAR Original Sparse LiDAR Our Dense LiDAR

ego car position missing area due to uphill ego car position missing area due to uphill

Figure 10. Camera images for the corresponding LiDAR completion examples. See text for detailed explanations.



Figure 11. Manipulation results on (a) KITTI-360 and (b) PandaSet. The learned codes show high spatial alignment with the objects,
so we can manipulate the LiDAR sweeps by changing the code placement on the code map.


	. Code Identification
	. Experimental Details
	. Ablation Studies
	. Visualization

