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In the following, we provide more details and discussion
on normal prediction, d-BiNI and IF-Nets+, as well as more
qualitative results in the perceptual study, as an extension of
Sec. 3 and Sec. 4 of the main paper. We also explore future
applications. Please check the video on our website for an
overview of the method and more results.

1. Implementation details

1.1. Normal map prediction

We set the loss weights λJ diff, λN diff, and λS diff in Eq. (1)
to 5.0, 1.0, and 1.0 respectively. However, if the overlap ratio
between clothing and body mask is smaller than 0.5, it means
humans are dressed with loose clothing. In this situation we
trust the 2D joints more and increase the λJ diff = 50.0.
Similarly, when the overlap between body mask inside the
clothing mask and full body mask is smaller than 0.98, oc-
clusion happens. In such cases we set λS diff = 0.0 to avoid
limb self-intersection after pose refinement.

During inference, following ICON [11], we iteratively
refine SMPL-X and clothed-body normals for 50 iterations
(1.10 iter/s on Quadro RTX 5000 GPU). We use rembg1

plus Mask R-CNN [4] for multi-person segmentation,
Mediapipe [9] to estimate full-body landmarks, Open3D
for poisson surface reconstruction [5], and MonoPort [7,8]
for fast implicit surface query.

1.2. d-BiNI

Optimization details. To better present the optimization
details, we first write the d-BiNI objective function in a ma-
trix form. Figure 4 shows the four inputs to d-BiNI. We
vectorize the front and back clothed and prior depth maps
{Ẑc

F, Ẑc
B,Zb

F ,Zb
B} within Ωn as {ẑF, ẑB, zF, zB}; all vectors

are of length |Ωn|. d-BiNI then jointly solves for the front
and back clothed depth ẑF and ẑB by minimizing the objec-
tive function consisting of the five terms:

1https://github.com/danielgatis/rembg

L(ẑF, ẑB) = (AFẑF − bF)
⊤WF(AFẑF − bF)

+(ABẑB − bB)
⊤WB(ABẑB − bB)

+λd(ẑF − zF)
⊤M(ẑF − zF)

+λd(ẑB − zB)
⊤M(ẑB − zB)

+λs(ẑF − ẑB)
⊤S(ẑF − ẑB).

(S.1)

Here, AF ∈ R4|Ωn|×|Ωn| and bF ∈ R4|Ωn| are constructed
from the front normal map following Eq. (21) of BiNI [1];
AB and bB are from the back normal map. WF and WB ∈
R4|Ωn|×4|Ωn| are bilateral weight matrices for front and back
depth maps, respectively; both are constructed following
Eq. (22) of BiNI [1] and depend on the unknown depth. M
and S are |Ωn| × |Ωn| diagonal matrices whose diagonal
entries indicate the pixels with depth priors and located at
the silhouette, respectively. Specifically, the i-th diagonal
entry mi of M is

mi =

{
1, if i-th entry of ẑF in Ωz

0, otherwise
, (S.2)

while the i-th diagonal entry si of S is

si =

{
1, if i-th entry of ẑF in ∂Ωn

0, otherwise
. (S.3)

Stacking ẑF and ẑB as ẑ =
[
ẑF
ẑB

]
, Eq. (S.1) then reads

L(ẑ) = (Aẑ− b)⊤W(Aẑ− b)+

λd(ẑ− z)⊤M̃(ẑ− z) + λsẑ
⊤S̃ẑ,

(S.4)

where

A =

[
AF

AB

]
, b =

[
bF
bB

]
, W =

[
WF

WB

]
,

z =

[
zF
zB

]
, M̃ =

[
M

M

]
, S̃ =

[
S −S
−S S

]
.
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To minimize Eq. (S.4), we perform an iterative optimization
similar to BiNI [1]. At each iteration, we first fix the weights
W and jointly solve for the front and back depth ẑ , then
compute the new weights from the updated depth. When
W is fixed and treated as a constant matrix, solving for
the depth becomes a convex least-squares problem. The
necessary condition for the global optimum is obtained by
equating the gradient of Eq. (S.4) to 0:

(A⊤WA+ λdM̃+ λsS̃)ẑ = A⊤Wb+ λdM̃z. (S.5)

Equation (S.5) is a large-scale sparse linear system with a
symmetric positive definite coefficient matrix. We solve
Eq. (S.5) using a CUDA-accelerated sparse conjugate gradi-
ent solver with a Jacobi preconditioner 2.

Hyper-parameters. d-BiNI has three hyper-parameters: λd,
λs, and k. λd and λs are used in the objective function Eq. (3),
which control the influence of coarse depth prior term Eq. (4)
and silhouette consistency term Eq. (5) separately. k is
used in the original BiNI [1] to control the surface stiffness
(See Sup.Mat-A in BiNI [1] for more explanation of k).
Empirically, we set λd = 1e−4, λs = 1e−6, and k = 2.

Discussion of hyper-paramters. Figure S.4 shows the
d-BiNI integration results under different values of k. It
can be seen that a small k leads to tougher d-BiNI surfaces
where discontinuities are not accurately recovered, while a
large k softens the surface, and redundant discontinuities and
noisy artifacts are introduced. Figure S.5 shows the effects of
λd, which controls how much d-BiNI surfaces agree on the
SMPL-X mesh. Small λd causes misalignment between the
d-BiNI surface and the SMPL-X mesh, which will produce
stitching artifacts. While an excessively large λd enforces
d-BiNI to rely over heavily on SMPL-X, thus smoothing
out the high-frequency details obtained from normals. Fig-
ure S.6 justifies the necessity of the silhouette consistency
term. Without this term, the front and back d-BiNI surfaces
intersect each other around the silhouettes, which will cause
“blobby” artifacts after screened Poisson reconstruction [6].
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Figure S.1. Overview of IF-Nets+.

2https : / / docs . cupy . dev / en / stable / reference /
generated/cupyx.scipy.sparse.linalg.cg.html

1.3. IF-Nets+

Network structure. As Fig. S.1 shows, similar to
IF-Nets [2], IF-Nets+ applies multi-scale voxel 3D CNN
encoding on voxelized d-BiNI and the SMPL-X surface,
namely Fd-BiNI

1 and FSMPL-X
1 , generating multi-scale deep

feature grids to account for both local and global infor-
mation, F1, F2, . . . , Fn, Fk ∈ RK×K×K×Ck , n = 6.
These deep features are with decreasing resolution K =
N

2k−1
, N = 256 and variable dimension channels C =

{32, 32, 64, 128, 128, 128}. All these features are then fed
into an implicit function regressor, parameterized by a Multi-
Layer Perceptron (MLP), to predict the occupancy value of
point P. This MLP regressor is trained with BCE loss.

Training setting. IF-Nets and IF-Nets+ share the same train-
ing setting. The voxelization resolution for both SMPL-X
and d-BiNI surfaces is 2563. We use RMSprop as an op-
timizer, with a learning rate 1e−4, and weight decay by a
factor of 0.1 every 10 epochs. These networks are trained
on an NVIDIA A100 for 20 epochs with a batch size of
48. Following ICON [11], we sampled 10000 points with
the mixture of cube-uniform sampling and surface-around
sampling, with standard deviation of 5cm.

Dataset details. We augment THuman2.0 [12] by (1) ro-
tating the scans every 10 degrees around the yaw axis, to
generate 525 × 36 = 18900 samples in total, and (2) ran-
domly selecting a rectangle region from the d-BiNI depth
maps, and erasing its pixels [14]. In particular, the erasing
operation is being performed with p = 0.8 probability, the
range of aspect ratio of erased area is between 0.3 and 3.3,
and its range of proportion are {0.01, 0.05, 0.2}.

Speed analysis of ECON vs. ICON. d-BiNI takes 6.2 secs
(150 iters). For ECONIF, the IF-Nets+ plus Marching cubes
takes 2.6 secs (for 2563 resolution), and the Poisson step
takes 10.7 secs (level=10). For a single image, ECONIF
takes 112 secs, and ECONEX takes 97 secs. ICON, which
shares the same SMPL-X fitting (w/ landmarks), takes 78
secs, and w/ cloth-refinement (50 iters) it takes 115 secs.

2. Qualitative results
Figure S.2 shows examples on SHHQ [3]. Figure S.3

shows PaMIR’s results on the same photos in Fig. 9. Fig-
ures S.7 to S.9 show more comparisons used in our per-
ceptual study, containing the results on in-the-wild images
with challenging poses, loose clothing, and standard fash-
ion poses, respectively. For each image, we display the
results obtained by ECON, PaMIR [13], ICON [11], and
PIFuHD [10]. In each row, we show normal maps rendered
in {0◦, 90◦, 180◦, 270◦} views. The video on our website
shows more reconstructions with a rotating virtual camera.

https://docs.cupy.dev/en/stable/reference/generated/cupyx.scipy.sparse.linalg.cg.html
https://docs.cupy.dev/en/stable/reference/generated/cupyx.scipy.sparse.linalg.cg.html
https://econ.is.tue.mpg.de


Figure S.2. SHHQ 3D reconstruction. For each image we show a front and side view of ECON’s reconstruction and a SMPL-X fit.

Figure S.3. ECON (Top) vs. PaMIR (Bottom) on loose clothes; ü Zoom in to see front/back 3D details.
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Figure S.4. The effects of the hyper-parameter k on d-BiNI results. k controls the stiffness of the target surface [1]. A smaller k leads to
smooth d-BiNI surfaces, while a large k introduces unnecessary discontinuities and noise artifacts.
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Figure S.5. The effects of the hyperparameter λd on d-BiNI results. λd controls how much d-BiNI surfaces agree with the SMPL-X mesh.
A small λd causes a misalignment between the d-BiNI surface and the SMPL-X mesh, thus it produces stitching artifacts. An excessively
large λd enforces d-BiNI to rely too heavily on SMPL-X, thus it smooths out the high-frequency details obtained from normals.

Image Front Normal Prediction Back Normal Prediction w/o silhouette consistency w/ silhouette consistency Blobby artifacts after screened poisson

Figure S.6. Necessity of silhouette consistency. This term can be regarded as the mediator between front and back d-BiNI surfaces,
preventing these surfaces from intersecting. Such intersection causes blobby artifacts after screened Poisson reconstruction [6].



Figure S.7. Results on in-the-wild images with challenging poses. For each example the format is as follows: Top → bottom: ECON,
PaMIR [13], ICON [11], and PIFuHD [10]. Left → right: Virtual camera rotated by {0◦, 90◦, 180◦, 270◦}. ü Zoom in to see 3D details.



Figure S.8. Results on in-the-wild images with loose clothing. For each example the format is as follows: Top → bottom: ECON,
PaMIR [13], ICON [11], and PIFuHD [10]. Left → right: Virtual camera rotated by {0◦, 90◦, 180◦, 270◦}. ü Zoom in to see 3D details.



Figure S.9. Results on in-the-wild fashion images. For each example the format is as follows: Top → bottom: ECON, PaMIR [13],
ICON [11], and PIFuHD [10]. Left → right: Virtual camera rotated by {0◦, 90◦, 180◦, 270◦}. ü Zoom in to see 3D details.
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