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Outline. As part of supplementary materials for our
main paper titled “Abstract Visual Reasoning: An Algebraic
Approach for Solving Raven’s Progressive Matrices”, we
provide further details, organized into the following three
appendices:

• Appendix A gives further algebraic details on alge-
braic machine reasoning.

• Appendix B gives further experiment details for how
we solved RPMs.

• Appendix C gives further discussion on algebraic ma-
chine reasoning, including its potential societal impact
and its differences from logic-based reasoning.

A. Further Algebraic Details
This appendix serves as an in-depth elaboration of the

algebraic ideas presented in Section 3. For definitions and
relevant terminology, we have kept this appendix as self-
contained as possible. For proofs of “standard” algebraic
results, we provide references to explicit proofs in textbooks
wherever possible, and provide full proof details otherwise.
For ease of reading, it would be helpful if the reader has
at least some prior exposure to the basics of commutative
algebra, e.g. at the level of undergraduate abstract algebra.
For a gentle introduction to commutative algebra and com-
putational algebra, we recommend [7]. For a more detailed
treatment of the subject, see [9].

Throughout the appendix, let R := k[x1, . . . , xn] be a
polynomial ring on n variables x1, . . . , xn, with coefficients
in a field k. In the main paper, we assumed for simplic-
ity that k = R; in fact, k can be chosen to be any field.
In particular, k need not be an algebraically closed field.1

*Equal contributions. † Corresponding author.
◦ This work was done when the author was previously at SUTD.
1When dealing with a system of polynomial equations in n variables,

where the coefficients of the polynomial equations are treated as values in
k, any solution to this system of polynomial equations is a point in kn. It is
frequently assumed that k is algebraically closed, so that the analysis of the
solution space is easier. Similarly, when considering the algebraic variety

(Note that C is an algebraically closed field, while R is not.)
This means that we allow k = R. We also allow k to be a
field with non-zero characteristic (e.g. a finite field Z/pZ
for some prime number p). The specific choice of field k
will be irrelevant for the details discussed in this appendix,
since none of the algebraic computations required for rea-
soning involve numerical computations on the coefficients
of the terms of polynomials. For concreteness, the reader
may choose to assume henceforth that k = R, without any
loss of generality.

For our algebraic notation, we use “⟨g1, . . . , gk⟩” to de-
note an ideal generated by g1, . . . , gk, in contrast to some
other authors who use the notation “(g1, . . . , gk)” instead to
refer to ideals. For us, we reserve the use of round brackets
to denote tuples, e.g. “(g1, . . . , gk)” is a k-tuple. All other
algebraic notation we use is consistent with the present-day
notation used in the commutative algebra literature.

The rest of Appendix A is organized as follows:
• Appendix A.1 gives further details and relevant results

concerning concepts (i.e. monomial ideals), including
algebraic operations on ideals, and with a focus on the
special case of monomial ideals.

• Appendix A.2 gives a detailed treatment of Gröbner
basis theory, the key “workhorse” underlying most of
the algorithms in computational algebra and commu-
tative algebra.

• Appendix A.3 gives more details on primary ideals
and primary decompositions, as well as a discussion
on how primary decompositions relate to the inductive
bias for algebraic machine reasoning.

• Appendix A.4 completes the proof of Theorem 3.1
from the main paper, and gives details on why defining
concepts as monomial ideals captures the expressive-

associated to such a system of polynomial equations, the analysis of the
algebraic variety is easier when the base field k is algebraically closed. In
our paper, we do not deal with or solve systems of polynomial equations,
and we will not work with algebraic varieties. Hence, we will not assume
that k is algebraically closed.
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ness of concepts in human reasoning.

A.1. Concepts, monomial ideals, ideal operations

Let N be the set of non-negative integers. For each
α = (α1, . . . , αn) ∈ Nn, let xα denote the monomial
xα1
1 xα2

2 . . . xαn
n in R. By definition, a monomial in R is

a polynomial of the form xα, i.e. the leading coefficient of
a monomial is always 1, the multiplicative identity of the
field k. The degree of xα, which we denote by deg(xα), is
the sum α1 + · · ·+ αn. For example, deg(x2

1x
3
2x

7
3) = 12.

A.1.1 Algebraic properties of concepts

LetMR be the set of all monomials in R. We begin with the
observation that the polynomial ring R is a k-vector space
with basisMR. This means that every polynomial p in R
can be written as p =

∑
m∈MR

am ·m, where each am is
a uniquely determined scalar in k, called the coefficient of
the monomial m in p. A monomial m ∈ MR is called a
monomial of p if its coefficient am is non-zero.

Proposition A.1. [7, Chap. 2.4, Lemma 3] Let p be a
polynomial of R, and let J be a monomial ideal of R. Then
p is an element of J if and only if every monomial m of p is
an element of J .

Although MR is infinite (since it contains monomials
of all degrees), it is a well-known algebraic fact that every
ideal I of R has a finite generating set; this is famously
known as Hilbert’s basis theorem (see [7, Chap. 2.5, Thm.
4] or [9, Thm. 1.2] for a proof). For monomial ideals, we
have the following stronger result:

Proposition A.2. [32, Lemma 1.2] Every monomial ideal
of R has a unique minimal generating set consisting of
finitely many monomial generators.

To make sense of Proposition A.2, note that a generat-
ing set G for an ideal J of R is called minimal if no strictly
smaller subset G′ ⊊ G generates J . This means if we are
given a monomial ideal J of R, and any subsetM ⊆MR

of monomials that generates J , i.e. J = ⟨M⟩, then Propo-
sition A.2 tells us that we can always find a minimal subset
M′ ⊆ M (with respect to set inclusion) that generates the
same ideal J , such that this minimal subsetM′ is uniquely
determined, independent of our choice ofM. This unique
minimal generating set of monomials shall be denoted by
mingen(J).

Given any monomial ideal J of R, a monomial contained
in mingen(J) is called a minimal monomial generator of
J . Since a concept is defined to be a monomial ideal of
R, we can analogously define a minimal instance of J to
be a minimal monomial generator of J . Thus, a concept is
generated by all of its minimal instances.

Recall that there are three basic operations on ideals:
sums, products, and intersections. Let J1 = ⟨g1, . . . , gk⟩
and J2 = ⟨h1, . . . , hℓ⟩ be any two ideals of R. Then the
sum J1 + J2, product J1J2 and intersection J1 ∩ J2 are
ideals defined as follows:

J1 + J2 := ⟨g1, . . . , gk, h1, . . . , hℓ⟩;
J1J2 := ⟨{gihj |1 ≤ i ≤ k, 1 ≤ j ≤ ℓ}⟩;

J1 ∩ J2 := {r ∈ R : r ∈ J1 and r ∈ J2}.

In particular, J1 ∩ J2 is an ideal, since for any polyno-
mials r1, . . . , rs in J1 ∩ J2, the polynomial combination
r1p1 + · · · + rsqs (for any polynomials p1, . . . , ps in R) is
by definition contained in both J1 and J2.

A useful property of these basis operations on ideals is
that monomial ideals remain as monomial ideals under such
operations:

Proposition A.3. If J1 and J2 are concepts of R, then J1+
J2, J1 ∩ J2 and J1J2 are also concepts of R. Furthermore,
we always have J1J2 ⊆ J1 ∩ J2.

Proof. Clearly, J1+J2 and J1J2 are monomial ideals, since
the generators specified in their definitions are monomials.
Also, for each 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ, the element gihj is
by definition contained in both J1 and J2, which means that
every minimal monomial generator of J1J2 is an element of
J1 ∩ J2, thus we get J1J2 ⊆ J1 ∩ J2.

Finally, we shall prove that J1 ∩ J2 is a monomial ideal.
LetM′ :=MR ∩ J1 ∩ J2, and define the monomial ideal
J ′ := ⟨M′⟩ ⊆ R. By definition, M′ ⊆ J1 ∩ J2, hence
J ′ ⊆ J1 ∩ J2. To show that the converse J ′ ⊇ J1 ∩ J2
holds, consider an arbitrary element p ∈ J1 ∩ J2, and write
p =

∑
m∈MR

am ·m, where each am ∈ k is the coefficient
of the monomial m. Note that p ∈ J1 and p ∈ J2. Since J1
and J2 are both monomial ideals, Proposition A.1 implies
that every monomial m of p (i.e. with coefficient am ̸= 0)
is an element of J1 ∩ J2, and so must also be contained in
M′ =M∩ J1 ∩ J2. Thus, p ∈ ⟨M′⟩ = J ′.

A.1.2 A hierarchy of different kinds of concepts

Recall that the first stage of algebraic machine reasoning is
algebraic representation. For the RPM task, we extracted
attribute information from raw RPM images, and encoded
each RPM panel algebraically as a concept. These con-
cepts that we have used for our algebraic representation of
RPM panels are particularly nice: Their minimal mono-
mial generators are squarefree. Recall that a monomial
xα in R (for some α = (α1, . . . , αn) ∈ Nn) is called
squarefree if every exponent αi is either 0 or 1, or equiv-
alently, if xα ̸∈ ⟨x2

1, . . . , x
2
n⟩. (Informally, a monomial m

is squarefree if the variables appearing in m do not have
“higher powers”, i.e. none of the variables have exponents



≥ 2.) Monomial ideals generated by squarefree monomials
are called squarefree monomial ideals, and such ideals are
heavily studied in commutative algebra for their rich prop-
erties [32, 40]. Hence, we are motivated to define the fol-
lowing notion of “basic” concepts.

Definition A.4. A concept J in R is called basic if J ̸= R,
and if all of its minimal instances (i.e. minimal monomial
generators) are squarefree.

We shall later prove in Theorem A.13 that basic concepts
have a particularly nice structure for extracting patterns.

We shall also introduce the notion of “simple” concepts.
Consider the ideal J1 := ⟨xblackxsquare, xwhitexcircle⟩, which
is a basic concept that represents “black square or white cir-
cle”. Such a concept is contained in the intuitively simpler
concept J2 := ⟨xblack, xwhite⟩ representing “black or white”.
Note that J2 is generated by two primitive instances xblack
and xwhite. To capture this intuition that “black or white” is
simpler than “black square or white circle”, we define a con-
cept J in R to be simple if J is generated by a non-empty
set of primitive instances in R, i.e. a non-empty subset of
{x1, . . . , xn}. Equivalently, a concept is simple if it is the
sum of primitive concepts. Notice that all simple concepts
are basic, since a primitive instance is squarefree. As we
shall see later in Appendix A.3.2, every basic concept can
be “decomposed” into multiple simple concepts.

To summarize, we have the following hierarchy of dif-
ferent kinds of concepts:{

concepts
}
⊇

{ basic
concepts

}
⊇

{ simple
concepts

}
⊇

{primitive
concepts

}
.

A.2. Gröbner basis theory

In this subsection, we review basic terminology and sev-
eral elementary results in Gröbner basis theory. For a quick
introduction to what a Gröbner basis of an ideal is, see [42].

Why is Gröbner basis theory important? In essence, if
we want to compute the answer to a computational problem
involving ideals, we typically need, as a key initial step, to
compute the Gröbner bases of the input ideals. Subsequent
computational steps would usually involve working directly
with the computed Gröbner bases, rather than the origi-
nally given generating sets for the input ideals. To avoid
the reader thinking that Gröbner basis computations are for
“more advanced” operations on ideals, we highlight here
that computing the intersections of ideals already relies on
Gröbner basis computations: Given ideals J1, J2 of R with
generating sets G1,G2 respectively, it is already not trivial
to compute a generating set for the intersection J1 ∩ J2.

A.2.1 What is a Gröbner basis?

Recall that R is a k-vector space with basis MR, where
MR denotes the set of monomials in R. The starting point
in Gröbner basis theory is the sorting of the setMR.

Definition A.5. A monomial order on R is a well-order on
MR, denoted by <, such that for all monomials m1,m2,m
inMR satisfying m ̸= 1, the following condition holds:

If m1 > m2, then mm1 > mm2 > m2.

Given a monomial order <, and any polynomial p in
R, we can always write p = c1m1 + · · ·+ ckmk for some
non-zero scalars c1, . . . , ck in k, and some monomials
m1, . . . ,mk in MR that are sorted in descending order
m1 > · · · > mk with respect to the monomial order
<. These scalars and monomials are uniquely determined
given p and <. Recall that the monomials m1, . . . ,mk are
precisely all the monomials of p, and each scalar ci is the
coefficient of mi in p. The initial monomial of p (with re-
spect to <), denoted by in<(p), is the largest monomial m1.
By default, we define in<(0) = 0.

Suppose A = {p1, . . . , pk} is a finite set of polynomials
in R. Write p =

(∑k
i=1 fipi

)
+ q where f1, . . . , fk, q are

polynomials in R, such that in<(p) ≥ in<(fipi) for all 1 ≤
i ≤ k, and such that none of the monomials of q are divisi-
ble by any monomial contained in {in<(p1), . . . , in<(pk)}.
Such an expression always exists and is called a standard
expression of p with respect to A. Any such polynomial q
is called a remainder of p with respect to A. If 0 is a re-
mainder of p with respect to A, then we say that p reduces
to zero with respect to A. Note that standard expressions
and remainders of p (with respect to A) are in general not
unique.

Let f, g ∈ R be polynomials that are not both the zero
polynomial. The S-pair of f and g (with respect to <) is
the polynomial

S(f, g) := cg in<(g)

gcd(in<(f), in<(g))
f− cf in<(f)

gcd(in<(f), in<(g))
g,

where gcd(in<(f), in<(g)) denotes the greatest common
divisor of in<(f) and in<(g), and cf (resp. cg) is the coef-
ficient of in<(f) (resp. in<(g)) in f (resp. g). We use the
convention that gcd(f, 0) = f for all non-zero polynomials
f ∈ R. By default, define S(0, 0) = 0. It is straightforward
to check that if gcd(in<(f), in<(g)) = 1, then S(f, g) al-
ways reduces to zero with respect to {f, g}.

For any ideal I of R, the monomial ideal in<(I) :=
⟨{in<(f)|f ∈ I}⟩, generated by the initial monomials of
all elements in I , is called the initial ideal of I (with respect
to <). A Gröbner basis for I (with respect to <) is a finite
set G of elements in I , such that in<(I) is generated by the
set {in<(f)|f ∈ G}. Gröbner bases for I (with respect to
any monomial order) always exist, and every Gröbner basis
for I must generate I . If G is a Gröbner basis for I , then
the remainder of p with respect to G is unique. In particular,
p ∈ I if and only if p reduces to zero with respect to G.

Consider any finite generating set A for the ideal I .
Buchberger’s criterion says that A is a Gröbner basis for



I (with respect to some given monomial order <) if and
only if S(f, g) reduces to zero for every f, g ∈ A. This cri-
terion yields Buchberger’s algorithm, which is an algorithm
to compute a Gröbner basis G for any ideal I of S, given a
finite generating set A for I as input. Buchberger’s algo-
rithm is described as follows: Starting with the input gener-
ating set A, compute the remainders of the S-pairs S(f, g)
with respect to A, for all generators f, g ∈ A; if any such
remainder q is non-zero, then insert the polynomial q into
A and repeat the process. This process must terminate af-
ter finitely many steps, and the final A obtained after the
process terminates is a Gröbner basis for I , which contains
the initially given generating set A. Note that by definition,
all S-pairs of pairs of elements in the final Gröbner basis A
must reduce to zero with respect to A.

A.2.2 Computational subroutines in algebra

Computational problems in algebra can be solved using
computer algebra systems. Well-known computer algebra
systems (e.g. Maple, Magma, Mathematica, MATLAB;
cf. [7, Appendix C]) are frequently used to solve systems of
polynomial equations, while more specialized systems (e.g.
CoCoA [1], GAP [11], Macaulay2 [16], SageMath [44],
Singular [8]) are more commonly used by algebraists to
solve computational problems where ideals are the “actual
objects of study”, i.e. not involving the assignment of nu-
merical values to variables.

Gröbner bases are always defined with respect to some
given monomial order <. In many computer algebra sys-
tems (e.g. CoCoA [1], Macaulay2 [16], SageMath [44],
Singular [8]), the default monomial order for Gröbner ba-
sis computations is the graded reverse-lexicographic order,
also known as the degree reverse-lexicographic order.

Definition A.6. The graded reverse-lexicographic order
(grevlex order) on R, which we denote by <rℓ, is a mono-
mial order on R, such that for any distinct monomials xα,
xβ in R, where α = (α1, . . . , αn) and β = (β1, . . . , βn),
we have xα >rℓ xβ if and only if either deg(xα) >
deg(xβ); or deg(xα) = deg(xβ), and αi < βi for the
largest 1 ≤ i ≤ n such that αi ̸= βi.

For example, if n = 3 (i.e. R = k[x1, x2, x3]), then the
degree 3 monomials in R, arranged in the grevlex order, is
given as follows:

x3
1 >rℓ x

2
1x2 >rℓ x1x

2
2 >rℓ x

3
2 >rℓ x

2
1x3 >rℓ x1x2x3

>rℓ x
2
2x3 >rℓ x1x

2
3 >rℓ x2x

2
3 >rℓ x

3
3.

Notice that in our definition for the grevlex order, the degree
1 monomials (which are precisely the n variables in R) are
arranged as x1 >rℓ x2 >rℓ> · · · >rℓ xn. Hence, by per-
muting these variables, there are n! distinct grevlex orders
that can be defined on a polynomial ring with n variables.

In general, we would need to specify a linear order on the
n variables in R, then define the grevlex order on top of the
specified linear order for these degree 1 monomials. For this
paper, we assume implicitly and without loss of generality
that x1 > x2 > · · · > xn for all monomial orders < on R.

Ideal membership. Let p ∈ R be a polynomial, let I be
an ideal of R, and suppose that G is a Gröbner basis for I .
How do we decide if p is contained in I? We can compute
the remainder of p with respect to G. This remainder is zero
if and only if p is contained in I; see [7, Chap. 2.8].

Ideal containment. Let J1, J2 be ideals of R, and sup-
pose G1,G2 are Gröbner bases for J1, J2, respectively. How
do we decide if J1 ⊆ J2? Suppose G1 = {g1, . . . , gk}.
Then J1 ⊆ J2 if and only if gi reduces to zero with respect
to G2 for all 1 ≤ i ≤ k.

Intersection of ideals. Let J1, J2 be ideals of R, and
suppose that G1 = {g1, . . . , gk},G2 = {h1, . . . , hℓ} are
Gröbner bases for J1, J2, respectively. What is a possible
generating set G for J1∩J2? We can compute G algorithmi-
cally as follows: First, construct an “extended” polynomial
ring R′ := k[x1, . . . , xn, t] that has an additional variable
t, so that R is a subring of R′, and consider any mono-
mial order < such that any monomial divisible by t is larger
than all monomials not divisible by t. Construct a new ideal
K := ⟨tg1, . . . , tgk, (1− t)h1, . . . , (1− t)hℓ⟩ contained in
the new ring R′, compute a Gröbner basis G′ for K with
respect to the described monomial order <, then compute
the subset G ⊆ G′ comprising all those elements g′ ∈ G′
such that in<(g′) is not divisible by t. This final set G is not
just a generating set for J1 ∩J2; it is in fact a Gröbner basis
for J1 ∩ J2. For proof details on why this algorithm works,
see [7, Chap. 4.3].

For a more detailed treatment of Gröbner basis theory,
including its rich connections to algorithms in computa-
tional algebra and the numerous computational problems in
commutative algebra, see [9, Chap. 15].

A.3. Primary ideals and primary decompositions

The notion of primary decompositions arises as a far-
reaching generalization of the idea of prime factorization
in integers, and has deep implications in number theory,
group theory, and algebraic geometry. For example, the
prime factorization of integers, the classification of finite
abelian groups, and the decomposition of algebraic vari-
eties into their irreducible components, can be interpreted as
three seemingly different decomposition theorems that are
three special cases of the celebrated Lasker–Noether theo-
rem; see [9, Thm. 3.10] for a statement of this theorem in
its full generality.

In our context, the Lasker–Noether theorem tells us that
every ideal of R can be decomposed into an intersection
of finitely many “primary” ideals. Such a decomposition
is called a “primary decomposition”, and there are several



known algorithms for computing the primary decomposi-
tions of ideals in polynomial rings; see [10,13,39] for state-
of-the-art algorithms. In our paper, the computation of pri-
mary decompositions of concepts (i.e. monomial ideals) is
a key ingredient for our algebraic machine reasoning frame-
work.

A.3.1 What exactly is a primary decomposition?

To rigorously define primary decompositions and related
notions, we first need to introduce more technical algebraic
terminology.
Prime ideals and primary ideals. Let J be an ideal of R.
We say that J is proper if J is not the entire polynomial
ring R, i.e. if J ̸= ⟨1⟩. We say that J is a prime ideal if J
is proper ideal that satisfies the following condition:

If J1, J2 are ideals of R such that J1J2 ⊆ J , then either
J1 ⊆ J or J2 ⊆ J (or both).

A prime ideal P of R is called an associated prime of J , if
there exists an element r ∈ R satisfying r ̸∈ J , such that
P = {p ∈ R|pr ∈ J}. We say the ideal J is primary if J
has exactly one associated prime; if this unique associated
prime is P , then we say that J is a P -primary ideal. There
is another useful equivalent definition for primary ideals;
cf. [9, Prop. 3.9]. An ideal J of R is primary if it is a
proper ideal that satisfies the following condition:

If x, y are elements of R such that xy ∈ J , then either
x ∈ J , or yk ∈ J for some k ∈ Z+.

Primary decompositions and associated primes. We now
state (a special case of) the Lasker–Noether theorem:

Theorem A.7 ( [9, Thm. 3.10]). Every proper ideal J of R
can be written as an intersection J = J1∩· · ·∩Jk for some
finitely many primary ideals J1, . . . , Jk of R. Furthermore,
if each Ji is a Pi-primary ideal for a prime ideal Pi of R,
then every associated prime of J must be one of the prime
ideals P1, . . . , Pk.

A primary decomposition of J ⊆ R is a decomposition
of J as an intersection of finitely many primary ideals of R.
Theorem A.7 says that primary decompositions for proper
ideals of R always exist. Note that in general, an ideal J
could have multiple primary decompositions.

Consider a primary decomposition J = J1 ∩ · · · ∩ Jk of
a proper ideal J . The primary ideals J1, . . . , Jk are called
the primary components of this primary decomposition.2 If

2When dealing with primary components, it is implicitly assumed that
any primary component is referenced with respect to some given primary
decomposition. Since primary decompositions are not unique, merely
mentioning that Ji is a primary component of J without having any con-
text of the primary decomposition that Ji is a primary component of,
would be ambiguous.

each Ji is a Pi-primary ideal for some prime ideal Pi, then
we say that Ji is a Pi-primary component (of this primary
decomposition). If the number k of primary components in
the primary decomposition J = J1 ∩ · · · ∩ Jk is the small-
est among all possible primary decompositions of J , then
we say that J = J1 ∩ · · · ∩ Jk is a minimal primary de-
composition. In this case, the associated primes P1, . . . , Pk

must all be distinct (see [9, Thm. 3.10c]). Note that minimal
primary decompositions are in general not unique.

The radical of an ideal J ⊆ R is the ideal defined by
√
J := {r ∈ R|rk ∈ J for some k ∈ Z+}.

The next proposition relates radicals to the associated
primes of primary components in a primary decomposition.

Proposition A.8. Let J be a proper ideal of R, and let
J = J1 ∩ · · · ∩ Jk be a minimal primary decomposition
of J . Then for each 1 ≤ i ≤ k, the radical

√
Ji is

a prime ideal, and the primary component Ji is a
√
Ji-

primary ideal. Furthermore,
√
J1, . . . ,

√
Jk are all the dis-

tinct associated primes of J .

Proof. Let J ′
1, J

′
2 be ideals of

√
Ji such that J ′

1J
′
2 ⊆
√
Ji.

Let j1 ∈ J ′
1, j2 ∈ J ′

2 be arbitrarily chosen non-zero ele-
ments. By the definition of a radical, we have (j1j2)

t ∈ J
for some t ∈ Z+, so since Ji is primary, we infer that either
jt1 ∈ Ji, or jtk2 ∈ Ji for some k ∈ Z+; this implies that ei-
ther j1 ∈

√
Ji or j2 ∈

√
Ji, i.e.

√
Ji is a prime ideal. Thus,

by [9, Cor. 2.12],
√
Ji is the smallest prime ideal contain-

ing Ji, hence [9, Prop. 3.9] implies that
√
Ji is the unique

associated prime of Ji. Finally, [9, Thm. 3.9c] completes
the proof.

Remark A.9. A useful consequence of Proposition A.8 is
that although an ideal J of R could have multiple different
minimial primary decompositions J = J1 ∩ · · · ∩ Jk, the
set {
√
J1, . . . ,

√
Jk} of prime ideals corresponding to any

minimal primary decomposition is always the same; this set
is called the set of associated primes of J .

Remark A.10. In computer algebra systems, a primary de-
composition is typically represented as a list of primary ide-
als. Although there are known algorithms for computing
a minimal primary decomposition3 of an arbitrary proper
ideal of a polynomial ring (see, e.g., [41] for several imple-
mentations in Macaulay2), we caution the reader that the
computation of primary decompositions may not be sup-
ported in some computer algebra systems.

Unique minimal primary decompositions. In the special
case that J is a proper monomial ideal of R, the minimal
primary decompositions of J are particularly nice:

3Existing implementations of algorithms to compute primary decom-
positions always return minimal primary decompositions. For a fixed ideal
J , it is possible to compute more than one minimal primary decomposi-
tion, e.g. in Macaulay2; see [17, 41].



Theorem A.11 ( [4]; cf. [9, Ex. 3.11]). Let J be a proper
monomial ideal of R. Then there exists a minimal primary
decomposition J = J1 ∩ · · · ∩ Jk satisfying the following:

• Every primary component Ji is a monomial ideal.
• Each primary component Ji is a Pi-primary ideal,

where the prime ideal Pi =
√
Ji is generated by a

subset of {x1, . . . , xn}.
• Each primary component Ji is maximal among all pos-

sible monomial Pi-primary components.
Furthermore, any minimal primary primary decomposition
of J satisfying these properties is uniquely determined up to
re-orderings of the primary components.

Succinctly, every proper monomial ideal J of R has
a unique minimal primary decomposition with maxi-
mal monomial primary components, whose corresponding
uniquely determined set {J1, . . . , Jk} of primary compo-
nents is denoted by (J).

In our language of algebraic machine reasoning (see, in
particular, Appendix A.1.2), Theorem A.11, combined with
Proposition A.8, yields the following corollary.

Corollary A.12. Let J be a concept of R such that J ̸= ⟨1⟩,
i.e. J is not the “conceivable” concept. Then there exist
finitely many distinct simple concepts P1, . . . , Pk of R that
are uniquely determined by J , and there exists a primary
decomposition J = J1 ∩ · · · ∩ Jk of the concept J as an in-
tersection of k concepts J1, . . . , Jk, such that every radical√
Ji is the simple concept Pi. Furthermore, any such de-

composition for which Ji is maximal over all possible con-
cepts with radical

√
Ji = Pi, is uniquely determined.

Primary decompositions for basic concepts. As we have
mentioned in Appendix A.1.2, we encoded RPM panels al-
gebraically as basic concepts, i.e. whose minimal instances
are squarefree. The following theorem tells us that basic
concepts are particularly nice, because they have unique
minimal primary decompositions whose primary compo-
nents are simple concepts.

Theorem A.13. Let J be a basic concept of R. Then there
exists a primary decomposition J = J1 ∩ · · · ∩ Jk of the
concept J as an intersection of finitely many distinct simple
concepts J1, . . . , Jk. Furthermore, such a decomposition is
unique up to re-orderings of the simple concepts J1, . . . , Jk.

Proof. Suppose mingen(J) = {m1, . . . ,mk}. Since J ̸=
⟨1⟩, none of the monomial generators m1, . . . ,mk can be 1,
so each of them has degree ≥ 1. If all of m1, . . . ,mk have
degrees exactly 1, then J is by definition a simple concept,
and we are trivially done. Thus, we can assume henceforth
that there is some minimal monomial generator mj such
that deg(mj) ≥ 2. This means we can write mj = m′m′′

for some monomials m′,m′′ inMR, each with degree≥ 1.
Since J is a basic concept, all minimal monomial generators

of J must be squarefree, so mj is a squarefree monomial,
which implies that gcd(m′,m′′) = 1. Hence, by defining
Ĝ := mingen(J)\{mj}, we can then decompose J as an
intersection

J = ⟨Ĝ ∪ {m′}⟩ ∩ ⟨Ĝ ∪ {m′′}⟩, (1)

where each of the two ideals ⟨Ĝ ∪ {m′}⟩ and ⟨Ĝ ∪ {m′′}⟩
in this decomposition is a squarefree monomial ideal.

Consequently, for every squarefree monomial ideal J ′

in any decomposition of J as an intersection of squarefree
monomial ideals, we can iteratively decompose J ′ further
as an intersection of two strictly larger squarefree monomial
ideals whenever J ′ contains a minimal monomial generator
m with degree≥ 2. By iteratively repeating this process, we
would then get a decomposition J = J1 ∩ · · · ∩ Jk, where
J1, . . . , Jk are squarefree monomial ideals whose minimal
monomial generators all have degree 1. By definition, each
such Ji is precisely a simple concept, and

√
Ji = Ji, there-

fore our assertion follows from Corollary A.12.

A.3.2 Inductive bias for algebraic machine reasoning

Theorem A.13 has an important consequence. It tells us that
any basic concept J of R, no matter how “complicated” it
may seem, can always be decomposed as an intersection
of simple concepts. Simple concepts are easy to interpret,
since by definition they are sums of primitive concepts.

Among all possible simple concepts (i.e. whose gen-
erating sets range over all possible non-empty subsets of
{x1, . . . , xn}, there are certain “distinguished” simple con-
cepts that are important for reasoning. Such “distinguished”
simple concepts are task-specific, and we call them attribute
concepts. Informally, an attribute concept is a concept rep-
resenting a certain attribute of interest.

In the RPM task, recall that we have attribute
concepts representing “position”, “number”, “type”,
“size”, and “color”; these are simple concepts that
categorize the primitive instances according to their
semantics, into what humans would call attributes.
For example, the “type” attribute concept Jtype =
⟨xtriangle, xsquare, xpentagon, xhexagon, xcircle⟩ is a simple con-
cept generated by xtriangle, xsquare, xpentagon, xhexagon, xcircle,
which represent all possible instances of the atribute “type”
in the RPM task.

The minimal instances of an attribute concept can be in-
terpreted as “attribute values”. This means that a simple
concept contained in an attribute concept would be gener-
ated by “attribute values” of a single “attribute”, and hence
would inherit the same semantics as the corresponding at-
tribute concept. For example, the simple concept J :=
⟨xtriangle, xpentagon, xcircle⟩ is contained in Jtype and inherits
the semantics of the attribute “type”. Notice that Jtype is a



concept that is meaningful to humans (representing possi-
ble types of geometric entities), hence J would also be a
concept that is similarly meaningful to humans (represent-
ing some possible types of geometric entities). After all, the
minimal instances of J are all instances of the same attribute
“type”.

Note that the identification of such attribute concepts is
task-specific, and the resulting reasoning performance (e.g.
in terms of the extracted patterns) would depend heavily on
these identified attribute concepts. In particular, our choice
of which simple concepts are attribute concepts would de-
termine the inductive bias of our reasoning framework: Af-
ter decomposing a basic concept into multiple simple con-
cepts, only those simple concepts contained in attribute con-
cepts are deemed “meaningful”, and we extract such simple
concepts as concepts representing patterns that are mean-
ingful to humans. Roughly speaking, when extracting com-
mon patterns with this inductive bias, our reasoning frame-
work is “biased” towards only those “simpler” concepts that
are contained in attribute concepts.

What about primitive concepts? Typically, they are self-
evident and easy to define. This is because the precise for-
mulation of any reasoning task would first require an iden-
tification of (the semantics of) the possible data attribute
values, which then naturally informs us what our primitive
concepts should be. For the RPM task, we had 4 perception
modules for the 4 attributes “color”, “size”, “type”, “po-
sition”, so all the possible attribute values across these 4
attributes would naturally form primitive concepts.

In general, for visual reasoning tasks, the possible object
classes that can be predicted by perception models would
naturally take the role of primitive concepts for our reason-
ing framework.

A.4. Algebraic intuition for concepts

A.4.1 Proof of Theorem 3.1

For convenience to the reader, we re-state Theorem 3.1:

Theorem 3.1. There are infinitely many concepts in R, even
though there are finitely many primitive concepts in R. Fur-
thermore, if J ⊆ R is a concept, then the following hold:

(i) J has infinitely many instances, unless J = ⟨0⟩.
(ii) J has a unique minimal generating set consisting of

finitely many instances, which we denote by mingen(J).
(iii) If J ̸= ⟨1⟩, then J has a unique set of associated con-

cepts {P1, . . . , Pk}, together with a unique minimal
primary decomposition J = J1 ∩ · · · ∩ Jk, such that
each Ji is a concept contained in Pi, that is maximal
among all possible primary components contained in
Pi that are concepts.

Proof. Since R = k[x1, . . . , xn], there are a total of n prim-
itive concepts in R, i.e. ⟨x1⟩, . . . , ⟨xn⟩. Since the setMR

of all monomials in R is infinite, and since each m ∈ MR

generates a concept ⟨m⟩, there are infinitely many concepts
in R. To show part (i), notice that if J ̸= ⟨0⟩, then J must
contain at least one monomial m ∈ MR, thus by the defi-
nition of an ideal, J contains mxk

1 for all k ∈ N and so has
infinitely many instances. For part (ii), see Proposition A.2.
Finally, part (iii) follows directly from Corollary A.12 and
Proposition A.8.

A.4.2 Compatibility with human reasoning and hu-
man understanding of concepts

In cognitive science, concepts are the most fundamen-
tal constructs for understanding human cognition [30, 35].
There are numerous competing theories [5,14,21,28,29,31,
37] on what “concepts” are (or should be). Even the seem-
ingly innocuous question of whether the underlying princi-
ples (upon which these different theories are based on) are
compatible or not, has been fiercely debated, and still re-
mains unresolved today [43].

Faced with such circumstances as our backdrop, we do
not seek to add to the debate by presenting a new theory on
concepts (in the sense of constructs for human cognition).
Rather, we seek to explain how our definition of concepts as
monomial ideals adequately captures some of the richness
of various aspects of concepts in human cognition. To us,
our algebraic approach is grounded in the intuition that con-
cepts are computable, and they represent abstractions that
derive computable meanings from its relations to other con-
cepts.

Compositionality. Concepts are compositional [21, 23].
A concept could be composed of multiple “simpler” con-
cepts. Distinct concepts could share a common concept. In
philosophy and in linguistics, this compositional structure
for concepts is widely accepted as an important aspect of
the human experience in learning new concepts [15]. For
the RPM task, the algebraic representation we used to en-
code RPM panels is compositional. We can compose a con-
cept in R by means of sums, products and intersections of
concepts in R. We can decompose a concept as an inter-
section of multiple concepts (via primary decompositions).
As we have discussed in the main paper, and elaborated in
Appendix A.3.2, the discovery of abstract patterns is based
on primary decompositions; for this algebraic approach to
work, we inherently need the “compositional” property of
ideals; cf. Appendix C.1.

Essence of concepts. In some theories of concepts [14,
21, 28], there is an imprecise notion of the “essence” of a
concept. We could view this “essence” as the definition
of the concept (e.g. consider the famous example that the
concept “bachelor” is synonymous with “unmarried man”).
However, more recent theories of concepts have espoused
the belief that many concepts that are meaningful to hu-
mans (e.g. “knowledge”, “truth”) do not lend themselves



easily to precise definitions in terms of other concepts [12].
This lack of definitional structure in some concepts has led
to the idea that concepts can be defined in terms of its con-
stituent features. For example, “feathers” and “wings” can
be viewed as features of the concept “bird”.

Careful distinction has to be made between defining fea-
tures and irrelevant features. For example, “singing and
chirping” could be a feature of the concept “bird”, but it
is not a defining feature: A bird does not need to be able
to sing or chirp to be considered a bird. Only the defin-
ing features of the concept would be considered part of the
“essence” of that concept. However, it remains a challenge
as to how the defining features of concepts can be extracted
in a principled manner; see [25].

Is there an analogous notion of “essence” for concepts
defined as monomial ideals? By definition, we can con-
struct a concept in R by specifying its generating set; this is
very much analogous to specifying features of the concept.
Given a generating set G for a concept J in R, we can com-
pute the set mingen(J) of minimal monomial generators of
J . By the uniqueness of mingen(J) (see Proposition A.2),
this means we can interpret the generators in mingen(J)
as being analogous to the defining features of the concept.
Generators in G that are not in mingen(J) are redundant for
generating J , and could be interpreted as irrelevant features.
Consequently, we can view mingen(J) as the “essence” of
concept J : Effectively, mingen(J) is a “distinguished” fi-
nite set of instances that determines all the infinitely many
possible instances in J ; cf. Theorem 3.1 of the main paper.

In contrast, there is no analogous notion of mingen(J)
in a logic-based or set-theoretic setting: For a given logi-
cal expression, there is a priori no “distinguished” subset
of the Boolean-type variables (appearing in the logical ex-
pression), or a subset of the clauses, that would represent
the entire logical expression. For any given infinite set, if
we do not have any further information about its elements,
then there is no natural way to assign to it a “distinguished”
finite subset that still represents the entire infinite set.

Concepts with partial definitions. In the classical the-
ory of concepts, a concept is characterized in terms of nec-
essary and sufficient conditions for an instance to be a mem-
ber of that concept [5]. A key criticism of this classical the-
ory is that humans are still able to reason with concepts that
have partial definitions; this has been the starting point of
neoclassical theories of concepts since the 1980s [30].

In algebraic machine reasoning, our notion of concepts
is well-equipped to handle partial definitions. Consider
the attribute value “xsquare” from the RPM task. Note that
the concept ⟨xsquare⟩ represents “square”, which can be de-
fined mathematically as a geometric entity in a plane with
four equal sides and four right angles. Yet, we do not re-
quire this full definition to solve the RPM task. All we
need is a partial definition based on the condition that a

square has four sides; we do not explicitly use other neces-
sary conditions such as “equals sides” and “equal angles”.
The necessary condition “four sides” is encoded as follows:
(i) the relation fnext(⟨xtriangle⟩) = ⟨xsquare⟩; (ii) the relation
fnext(⟨xsquare⟩) = ⟨xpentagon⟩; and implicitly, (iii) a percep-
tion model that distinguishes the object class associated to
xsquare from other object classes associated to the remaining
variables in Atype. For example, even if we do not know the
defining feature that a square should have four right angles,
and allow a rhombus to be an instance of concept ⟨xsquare⟩,
we could still solve the RPM task, provided that interior an-
gles are not a relevant feature for solving (which is the case
for both the RAVEN and I-RAVEN datasets).

At the heart of the versatility of our algebraic approach,
especially in dealing with partial definitions, is the fact that
we are free to impose any semantics we want on the prim-
itive concepts. In particular, the primitive concepts in R
do not necessarily need to match the traditional notion of
“primitive concepts”. In the classical theory of concepts (in
cognitive science), primitive concepts are primarily based
on human sensory perception [28]. In contrast, what we
define as primitive concepts in R is up to us, and would ef-
fectively depend on the specific reasoning task we wish to
solve, as well as the perception models we have; cf. Ap-
pendix A.3.2.

Furthermore, in contrast to logic-based approaches, we
do not need to “assign” truth values to all primitive con-
cepts. For example, to determine if an instance m is con-
tained in the concept J = ⟨xwhitexsquare⟩, we do not need to
know if the entity represented by m is small or large. The
“position” and “size” attribute values could be unknown.
All we need for determining that m ∈ J is to verify the nec-
essary conditions, that the entity represented by m is white
and is a square. We could still reason about all instances
in J , even if some of these instances have certain unknown
attribute values. Consequently, our reasoning framework is
able to deal with partial information, and still make infer-
ences about instances for which some of the truth values
(true or false), on whether they are contained in each primi-
tive concept, could be unknown. Intuitively, we do not have
to assign truth values to all variables (representing state-
ments about instance membership in primitive concepts), to
be able to reason using algebraic machine reasoning.

B. Further experiment details
In this section, we provide further implementation de-

tails of our algebraic machine reasoning framework and
more experimental results, organized as follows:

• Appendix B.1 gives further details on the algebraic
representation stage, including the design of the at-
tribute concepts and the performance of our object de-
tection modules.

• Appendix B.2 describes the details on how to “in-



Attribute value set Variable labels

Anum := {x0, . . . , x8} xone, xtwo, . . . , xnine

Apos := {x9, . . . , x31}

x(0.16,0.16,0.33), x(0.16,0.5,0.33), x(0.16,0.83,0.33), x(0.5,0.16,0.33), x(0.5,0.5,0.33),
x(0.5,0.83,0.33), x(0.83,0.16,0.33), x(0.83,0.5,0.33), x(0.83,0.83,0.33),
x(0.25,0.25,0.5), x(0.25,0.75,0.5), x(0.75,0.25,0.5), x(0.75,0.75,0.5),
x(0.42,0.42,0.15), x(0.42,0.58,0.15), x(0.58,0.42,0.15), x(0.58,0.58,0.15),
x(0.5,0.25,0.5), x(0.5,0.75,0.5), x(0.25,0.5,0.5), x(0.75,0.5,0.5), x(0.5,0.5,1.0), xdummy

Atype := {x32, . . . , x36} xtriangle, xsquare, xpentagon, xhexagon, xcircle

Acolor := {x37, . . . , x46} x#255, x#224, x#196, x#168, x#140, x#112, x#84, x#56, x#28, x#0

Asize := {x47, . . . , x68}

x(0.6,0.15), x(0.7,0.15), x(0.8,0.15), x(0.9,0.15),
x(0.4,0.33), x(0.5,0.33), x(0.6,0.33), x(0.7,0.33), x(0.8,0.33), x(0.9,0.33),
x(0.4,0.5), x(0.5,0.5), x(0.6,0.5), x(0.7,0.5), x(0.8,0.5), x(0.9,0.5),
x(0.4,1), x(0.5,1), x(0.6,1), x(0.7,1), x(0.8,1), x(0.9,1),

Table 1. Five sets of variables that correspond to the attribute values of five attributes.

Attribute Sub-sequences Remarks[
x(0.16,0.16,0.33), x(0.16,0.5,0.33), x(0.16,0.83,0.33), x(0.5,0.16,0.33), x(0.5,0.5,0.33),

x(0.5,0.83,0.33), x(0.83,0.16,0.33), x(0.83,0.5,0.33), x(0.83,0.83,0.33)

] 
Splitting based on
width (the last entry)position

[
x(0.25,0.25,0.5), x(0.25,0.75,0.5), x(0.75,0.25,0.5), x(0.75,0.75,0.5)

]
[
x(0.42,0.42,0.15), x(0.42,0.58,0.15), x(0.58,0.42,0.15), x(0.58,0.58,0.15)

]
x(0.5,0.25,0.5), x(0.5,0.75,0.5), x(0.25,0.5,0.5), x(0.75,0.5,0.5), x(0.5,0.5,1.0), xdummy fnext(⟨x⟩,∆) = ⟨xdummy⟩

size

[x(0.6,0.15), x(0.7,0.15), x(0.8,0.15), x(0.9,0.15)]

Splitting based on
width (the last entry)

[x(0.4,0.33), x(0.5,0.33), x(0.6,0.33), x(0.7,0.33), x(0.8,0.33), x(0.9,0.33)]

[x(0.4,0.5), x(0.5,0.5), x(0.6,0.5), x(0.7,0.5), x(0.8,0.5), x(0.9,0.5)]

[x(0.4,1), x(0.5,1), x(0.6,1), x(0.7,1), x(0.8,1), x(0.9,1)]

Table 2. The sub-sequences for attributes “position” and “size”, within which we cyclically order the variables to capture the sequential
information of the attribute values.

versely” apply the 4 invariance modules to generate
answers for RPM instances.

• Appendix B.3 gives examples of full computational
details of the 4 invariance modules and the answer gen-
eration process.

• Appendix B.4 gives details on an ablation study of our
algebraic machine reasoning framework to analyze the
effectiveness of each invariance module in the answer
selection task.

• Appendix B.5 provides examples of generated answers
for each RPM configuration in I-RAVEN [18].

B.1. Algebraic representation for RPM task

B.1.1 Semantics of algebraic objects

Attribute concepts. An instance of the RAVEN [47] (or I-
RAVEN [18]) dataset is given as a pair of files: an NPZ file
that stores the pixel values for a raw image, and an XML
file that stores the given answer and information about the
attribute values of entities in each of the 16 panels. As de-
scribed in Section 3.2.1 of the main paper, we first need to
define five disjoint sets of variables (representing the five at-
tributes) to encode the RPM instances algebraically. In the
main paper, we only considered those attribute values that
are involved in our running example for ease of explanation.
However, in order to use the same algebraic representation
set-up across all RPM instances, we shall define the sets of



variables that are composed of all possible attribute values.
In Table 1, we provide the list of all 69 variables (denoted

by x0, . . . , x68), grouped into our five attribute sets. We
shall also assign labels to these 69 variables; these labels
are character strings meant for easier human interpretation
of the meaning of each variable. We shall use the indices
and variable labels inter-changeably, e.g. x0 = xone. Note
that the last variable xdummy in Apos is introduced for the
purpose of subsequent use (in conjunction with the function
fnext) in the compositional invariance module, which will be
explained later. For the rest of the primitive instances, we
briefly describe below how they should be interpreted:

• Instances in Anum represent the number of geometric
entities in a given panel.

• Instances in Apos represent the positions of sub-panels
corresponding to geometric entities, in the form of 3-
tuples (xcenter, ycenter,width). (The position values pro-
vided in the XML files are in the form of 4-tuples, i.e.
(xcenter, ycenter,width, height). We omit the 4th entry
since the width and height of each sub-panel are al-
ways equal.)

• Instances in Atype represent the types (or “shapes”) of
geometric entities.

• Instances in Acolor represent the grayscale pixel values
of geometric entities, where x#255 represents “white”
and x#0 represents “black”.

• Instances in Asize represent the absolute sizes of sub-
panels, in the form of 2-tuples (relative size, width).
(The size values provided in the XML files are the rel-
ative size of entities (i.e. 0.4, . . . , 0.9) with respect to
the size of the sub-panel.)

Let L := {num, pos, type, color, size} denote the set of
attribute labels. Then for each attribute label ℓ ∈ L, we can
define the attribute concept Jℓ = ⟨Aℓ⟩.

Function fnext in the compositional invariance mod-
ule. We have described in Section 3.3.1 of the main paper
that we cyclically order the values in Aℓ for each attribute
label ℓ ∈ L, and define a function fnext(J |∆) to encode
the idea of “next”. Here ∆ represents the step size to map
any variable x ∈ Aℓ that appears in a generator of concept
J to the ∆-th variable after x (|∆|-th variable before x for
negative ∆), w.r.t. to the cyclic order on Aℓ. The cyclic
order within each Aℓ is used to guarantee that fnext(⟨x⟩|∆)
always lies in the same attribute concept as ⟨x⟩.

For attributes “number”, “type” and “color”, the vari-
ables can be naturally ordered following the sequential or-
der as indicated in Table 1. For attributes “position” and
“size”, we split the sequences of variables into multiple
sub-sequences. Within each sub-sequence, we define a
cyclic order that follows human intuition for the sequen-
tial information that is inherent in the semantics of the
variable labels; see Table 2. For example, the “next” po-
sition of x(0.75, 0.75, 0.5) (representing the bottom-right sub-

panel) should cycle back to x(0.25, 0.25, 0.5) (representing the
top-left subpanel), the “next” size of x(0.9,0.5) should cy-
cle back to x(0.4,0.5), etc. Note that the last few vari-
ables x(0.5,0.25,0.5), . . . , x(0.5,0.5,1.0) of “position” are not
in any sub-sequence, as there is no obvious sequential in-
formation on these position variables. Hence we intro-
duce a new variable xdummy so that for any position variable
x ∈ {x(0.5,0.25,0.5), . . . , x(0.5,0.5,1.0)},

fnext(⟨x⟩|any step ∆) = ⟨xdummy⟩,
fnext(⟨xdummy⟩|any step ∆) = ⟨xdummy⟩.

Function g in the binary-operator invariance mod-
ule. In Section 3.3.3 of the main paper, we introduced the
binary-operator module to extract numerical patterns, based
on a given real-valued function g on concepts, and a given
set Λ of binary operators. In our experiments on RAVEN
and I-RAVEN, we only considered attributes “number”,
“color” and “size” for this invariance module, as the remain-
ing two attributes “type” and “position” do not have obvious
numerical meanings. For attribute “number”, we define the
function gnum that maps each concept J to the number of
generators in the unique minimal generating set of J :

gnum(J) := |mingen(J)|.

For attribute “color”, we define the function gcolor to extract
the variable index within the color value sequence in Table
1. Note that we only apply gcolor to those concepts J for
which the color variables are invariant across all generators
in mingen(J). Similarly for attribute “size”, we define the
function gsize to extract the variable index within the size
value sub-sequences in Table 2.

For example, consider the concept below:

J =

〈
xtwox(0.5,0.25,0.5)xsquarex#255x(0.6,0.5),
xtwox(0.5,0.75,0.5)xcirclex#255x(0.8,0.5)

〉
.

We can compute
• gnum(J) = |mingen(J)| = 2, which indicates that J

has two minimal monomial generators;
• gcolor(J) = 0, which indicates that the color variable

(invariant across all generators in mingen(J)) is the
first element in the color value sequence;

• gsize(J) = None, as the size variables are different
across the two generators in mingen(J).

B.1.2 Object detection modules

In this subsubsection, we explain how we trained the ob-
ject detection modules to extract the attribute values from
the raw RPM images. As mentioned in the main paper, we
trained 4 standard RetinaNet models (each with a ResNet-
50 backbone) separately for all attributes except attribute



Class GTs Dets Recall AP

triangle 120978 120984 1.000 1.000
square 95967 95967 1.000 1.000
pentagon 121722 121722 1.000 1.000
hexagon 95017 95017 1.000 1.000
circle 118578 118578 1.000 1.000

Table 3. Object detection results for attribute “type”, evaluated
on the validation set of I-RAVEN. “GTs” refers to the number of
ground truth objects, “Dets” refers to the number of detected ob-
jects, and “AP” refers to the average precision score.

Class GTs Dets Recall AP

#255 114701 114743 1.000 1.000
#224 48561 48570 1.000 1.000
#196 49626 49627 1.000 1.000
#168 50013 50016 1.000 1.000
#140 52634 52639 1.000 1.000
#112 51144 51144 1.000 1.000
#84 48390 48396 1.000 1.000
#56 48566 48568 1.000 1.000
#28 44464 44468 1.000 1.000
#0 44163 44167 1.000 1.000

Table 4. Object detection results for attribute “color”, evaluated
on the validation set of I-RAVEN.

“number”, which can be directly inferred by counting the
number of predicted bounding boxes within a panel.

The RAVEN/I-RAVEN dataset typically contains 70,000
RPM instances that are evenly distributed among 7 con-
figurations. Within each configuration, the 10,000 RPM
instances are randomly split into 6,000 training instances,
2,000 validation instances, and 2,000 test instances. For
our experiments, we used only 10% of the training set, i.e.
we trained our object detection modules on 4,200 RPM in-
stances (600 from each configuration). Every RPM instance
can be split into 16 grayscale images of size 160×160, cor-
responding to 8 panels in the question matrix and 8 answer
options. Each image has one or more geometric entities,
which we shall detect. The ground truth labels and bound-
ing box of each geometric entity can be obtained from the
given XML files.

We used the MMDetection package [6] for standard
training, with their implementation of RetinaNet models
with a ResNet-50 backbone. All hyper-parameters are set
to the default values, with the following exceptions: (i)
during training, the initial learning rate is 0.003 for all at-
tributes; and (ii) during the inference stage, we use a confi-
dence threshold of 0.99 for “type”, and 0.95 for the other
3 attributes. All 4 modules are trained over 12 epochs.

Class GTs Dets Recall AP

(0.16, 0.16, 0.33) 16646 16646 1.000 1.000
(0.16, 0.5, 0.33) 16803 16803 1.000 1.000
(0.16, 0.83, 0.33) 16531 16559 1.000 1.000
(0.5, 0.16, 0.33) 16652 16652 1.000 1.000
(0.5, 0.5, 0.33) 18455 18445 0.999 0.999
(0.5, 0.83, 0.33) 18354 18348 1.000 1.000
(0.83, 0.16, 0.33) 32000 32000 1.000 1.000
(0.83, 0.5, 0.33) 32000 32000 1.000 1.000
(0.83, 0.83, 0.33) 32000 32000 1.000 1.000
(0.25, 0.25, 0.5) 16761 16761 1.000 1.000
(0.25, 0.75, 0.5) 16851 16851 1.000 1.000
(0.75, 0.25, 0.5) 18420 18404 0.999 0.999
(0.75, 0.75, 0.5) 96000 96000 1.000 1.000
(0.42, 0.42, 0.15) 16753 16753 1.000 1.000
(0.42, 0.58, 0.15) 16611 16611 1.000 1.000
(0.58, 0.42, 0.15) 18128 18128 1.000 1.000
(0.58, 0.58, 0.15) 17992 17992 1.000 1.000
(0.5, 0.25, 0.5) 18081 18042 0.998 0.998
(0.5, 0.75, 0.5) 18135 18104 0.998 0.998
(0.25, 0.5, 0.5) 48648 48688 1.000 1.000
(0.75, 0.5, 0.5) 32000 32000 1.000 1.000
(0.5, 0.5, 1.0) 18441 18417 0.999 0.999

Table 5. Object detection results for attribute “position”, evaluated
on the validation set of I-RAVEN.

The evaluation results on the validation set with 14,000 in-
stances (2,000 for each configuration) are shown in Tables
3-6.

According to the tables above, the object detection mod-
ule for attribute “type” has only 6 errors out of 552,262 ob-
jects, which significantly outperforms the object detection
modules for the other 3 attributes. Hence the module for
“type” is used as an “anchor” to combine the detection re-
sults obtained from all 4 modules. In particular, we first
obtain the list of detected objects, with a confidence score
above 0.99, from the “type” detection module. The pre-
diction result of each object can be reformulated as a pair
(type label, bounding box). For every detected “type” ob-
ject, we then obtain the lists of detection results from the
other 3 detection modules with a confidence score above
0.8; within each list, we select the (label, bounding box)
pair with the highest Intersection Over Union (IoU) score
w.r.t. the anchor bounding box from “type” module. These
3 selected pairs are assumed to be related to the entity corre-
sponding to the pair generated by the “type” module. There-
after, we can collect 4 closely related (label, bounding box)
pairs, each representing a detected object returned by one
detection module, and we can combine the labels from these
pairs as the attribute values extracted from a single entity.
Finally, we applied the 4 object detection modules trained



Class GTs Dets Recall AP

(0.6, 0.15) 23552 19372 0.823 0.823
(0.7, 0.15) 14447 11715 0.811 0.811
(0.8, 0.15) 14811 14805 1.000 1.000
(0.9, 0.15) 20084 20084 1.000 1.000
(0.4, 0.33) 32152 32152 1.000 1.000
(0.5, 0.33) 30635 30635 1.000 1.000
(0.6, 0.33) 30070 31111 1.000 1.000
(0.7, 0.33) 29539 29539 1.000 1.000
(0.8, 0.33) 30528 30528 1.000 1.000
(0.9, 0.33) 29332 29361 1.000 1.000
(0.4, 0.5) 35748 35748 1.000 1.000
(0.5, 0.5) 34319 34319 1.000 1.000
(0.6, 0.5) 32247 32247 1.000 1.000
(0.7, 0.5) 33439 33439 1.000 1.000
(0.8, 0.5) 33002 33002 1.000 1.000
(0.9, 0.5) 32357 32365 1.000 1.000
(0.4, 1.0) 5455 5455 1.000 1.000
(0.5, 1.0) 5829 5829 1.000 1.000
(0.6, 1.0) 5336 5336 1.000 1.000
(0.7, 1.0) 26793 26793 1.000 1.000
(0.8, 1.0) 25638 25636 1.000 1.000
(0.9, 1.0) 26949 26949 1.000 1.000

Table 6. Object detection results for attribute “size”, evaluated on
the validation set of I-RAVEN.

Configuration RAVEN I-RAVEN

Center 32000 32000
2×2Grid 32000 32000
3×3Grid 31996 31986
O-IC 23290 23617
O-IG 31988 31987
L-R 31999 31998
U-D 32000 32000

Avg. proportion 96.10% 96.24%

Table 7. The perceptual results of attribute values extracted via
object detection modules, evaluated on RAVEN and I-RAVEN, in
terms of the number of correctly detected panels (out of 2, 000 ×
16 panels) for each configuration and the overall proportions of
correctly detected panels.

on I-RAVEN to both RAVEN and I-RAVEN datasets, to ex-
tract the attribute values from the raw RPM test images. The
evaluation results are given in Table 7.

B.2. Full algorithmic details for “inverse" invari-
ance modules and answer generation

In this subsection, we provide the details on how to gen-
erate answers for RPM instances based on the common pat-

terns extracted from the first two rows and the first two pan-
els in the 3rd row. Informally, for every non-conflicting pat-
tern pair (K, J̌) ∈ P1,2(J) := P(all)

1 (J) ∩ P(all)
2 (J), we

shall “inversely” apply the corresponding invariance mod-
ule to the 3rd row J̌3 := [J̌3,1, J̌3,2]. Recall the following:

• P(all)
i (J) represents the set of pattern pairs extracted

from the i-th row of concept matrix J;
• J̌ represents a concept matrix from the extended list
[J, J̄(p1), Ĵ(p1), . . . , J̄(pk), Ĵ(pk)];

• K represents a common pattern specific to one at-
tribute extracted from the first two rows of J̌.

We begin by introducing the algorithmic details for each
“inverse” invariance module.

B.2.1 “Inverse” intra-invariance module

Algorithm 1 “Inverse” intra-invariance module.

Inputs: A pattern ℓ and the 3rd row J̌3 := [J̌3,1, J̌3,2].
1: Iout ← ⟨0⟩.
2: I ← pd(J̌3,1 + J̌3,2) ∩ pd(J̌3,1 ∩ J̌3,2).
3: for I ∈ I do
4: if I ⊆ ⟨Aℓ⟩ then
5: Iout ← I .
6: return Iout.

Given a sequence of concepts J1, . . . , Jk, we have de-
noted the sum and intersection of these concepts by J+ :=
J1 + · · · + Jk and J∩ := J1 ∩ · · · ∩ Jk. Recall that this
intra-invariance module extracts patterns where for some at-
tribute, the corresponding set of attribute values for entities
in Ji remains invariant over all i. The set of such extracted
patterns is given by:

Pintra([J1 . . . Jk]) :=
{

attr ∈ L | ∃I ∈ pd(J+) ∩ pd(J∩), I ⊆ ⟨Aattr⟩
}

.

Hence for a pattern pair (K, J̌) extracted via this invariance
module, the common pattern K is by definition an attribute
label ℓ ∈ L. The set of values for attribute ℓ should re-
main invariant across J̌3,1, J̌3,2 and J̌3,3. See Algorithm 1
for the pseudo-code to compute the ideal generated by the
corresponding attribute variable for J̌3,3.

Note that Algorithm 1 can automatically filter out those
patterns that conflict with the 3rd row J̌3, without needing
any manual checking. Specifically, the output of Algorithm
1 would be a zero ideal (Iout = ⟨0⟩) if the input pattern ℓ
conflicts with the input 3rd row J̌3. For the remaining 3 “in-
verse” invariance modules, we have the same mechanism to
automatically filter the conflicting patterns, i.e. the presence
of conflicting patterns would yield an output Iout = ⟨0⟩.



B.2.2 “Inverse” inter-invariance module

Algorithm 2 “Inverse” inter-invariance module.

Inputs: A pattern (ℓ, I) and the 3rd row J̌3 := [J̌3,1, J̌3,2].
1: Iout ← ⟨0⟩.
2: Compute I ′ in (2).
3: if I − I ′ ̸= ∅ and I ∩ I ′ ̸= ∅ then
4: Iout ←

∑
I∈I−I′ I .

5: return Iout.

Recall that the set of patterns extracted via inter-invariance
module is given by:

Pinter([J1, . . . , Jk]) :=

{
(attr, I)

∣∣∣∣∣ I ⊆ pd(J∩)− pd(J+),
attr ∈ L, I ⊆ ⟨Aattr⟩ ∀I ∈ I

}
,

For a pattern pair (K, J̌) extracted via this invariance mod-
ule, the common pattern K = (ℓ, I) is a pair, whose first
entry ℓ is an attribute label, and whose second entry I is a
set of ideals contained in the attribute concept ⟨Aℓ⟩. Nat-
urally, we shall infer the attribute values for J̌3,3 based on
the set difference I − I ′, where I ′ is defined by:

I ′ =
{
I
∣∣I ∈ (

pd(J̌3,1 ∩ J̌3,2)− pd(J̌3,1 + J̌3,2)
)
, I ⊆ ⟨Aℓ⟩

}
.

(2)

Note that this I ′ is defined in the manner that is analogous
to our definition for Pinter (restricted to the 3rd row of J̌ and
to attribute ℓ). See Algorithm 2 for a summary.

B.2.3 “Inverse” compositional invariance module

Algorithm 3 “Inverse” compositional invariance module.

Inputs: A pattern (ℓ, fnext|∆=∆∗) and the 3rd row J̌3 :=
[J̌3,1, J̌3,2].

1: Iout ← ⟨0⟩.
2: I ← pd

(
f2

next(J̌3,1|∆∗)
)
∩ pd

(
fnext(J̌3,2|∆∗)

)
.

3: for I ∈ I do
4: if I ∈ ⟨Aℓ⟩ then
5: Iout ← I .
6: return Iout.

Given a function f that maps concepts to concepts, the com-
positional invariance module extracts the patterns arising
from invariant attribute values in the new sequence of con-
cepts:

[J ′
1, . . . , J

′
k] = [fk−1(J1), f

k−2(J2), . . . , f(Jk−1), Jk].

The set of such patterns is given by:

Pcomp([J1, . . . , Jk]) :=

{
(attr, f)

∣∣∣∣∣ ∃I ∈
⋂k

i=1 pd(fk−i(Ji)),
attr ∈ L, I ⊆ ⟨Aattr⟩

}
.

Each pattern K = (ℓ, f) can be interpreted as follows: The
values of attribute ℓ are invariant across the new sequence
of concepts. In other words, for any pair of successive con-
cepts [Ji, Ji+1], i = 1, . . . , k − 1, in the original sequence,
the values of attribute ℓ should be invariant in [f(Ji), Ji+1].
This property provides a natural way to compute the at-
tribute values of a concept Ji+1, given the attribute values
of the previous concept Ji in the sequence; see Algorithm 3.
Note that for the RPM task, we introduce the fnext|∆ func-
tion for our compositional invariance module to extract the
sequential information within a row of the concept matrix.

B.2.4 “Inverse” binary-operator invariance module

Algorithm 4 “Inverse” binary-operator invariance module.

Inputs: A pattern (⊘, gℓ,Λ), and the 3rd row J̌3 :=
[J̌3,1, J̌3,2].

1: Iout ← ⟨0⟩.
2: t← gℓ(J̌3,1)⊘1 gℓ(J̌3,2). // expected gℓ(J̌3,3) value
3: x ← t-th variable in the corresponding attribute se-

quence (or subsequence) for attribute ℓ.
4: Iout ← ⟨x⟩.
5: return Iout.

Given a real-valued function g on concepts and a set Λ
of binary operators, the binary-operator invariance mod-
ule extracts patterns arising from the sequence of numbers
g(J1), . . . , g(Jk), described as follows:

Pbinary(Ji) :=

{
(⊘, g,Λ)

∣∣∣∣∣ ⊘ = [⊘1, . . . ,⊘k−2], ⊘i ∈ Λ,
g(J1)⊘1 · · · ⊘k−2 g(Jk−1) = g(Jk)

}
.

In other words, we can represent each pattern as an equa-
tion, obtained by inserting binary operators chosen from Λ
between the numbers in the sequence.

For a new given sequence of concepts J ′
1, . . . , J

′
k−1 and

a pattern K = ([⊘1, . . . ,⊘k−2], g,Λ), the value of g(J ′
k)

we expect from this pattern can be directly computed as
g(J ′

k) = g(J ′
1) ⊘1 · · · ⊘k−2 g(J ′

k−1). Then we can infer
the information about concept J ′

k based on the meaning of
function g.

As described in Section B.1, we introduced the func-
tion gnum(J) to extract the number of minimal monomial
generators of J (which also represents the number of enti-
ties in the corresponding panel), and introduced the func-
tions gcolor (resp. gsize) to extract the variable index within
the “color” value sequence (resp. within the “size” value
sub-sequence). Hence we can directly infer the correspond-
ing attribute variables for J ′

k from the values of gℓ(J ′
k), for

ℓ ∈ [“num”, “color”, “size”]. See Algorithm 4 for a sum-
mary.



Methods Avg. Acc. Center 2×2G 3×3G O-IC O-IG L-R U-D

With all 4 invariance modules 93.2 99.5 89.6 89.7 99.6 74.7 99.7 99.5
W/o intra-invariance module 63.7 63.5 71.6 73.4 60.2 49.8 63.2 64.0
W/o inter-invariance module 59.0 64.3 56.8 59.2 59.2 43.5 64.5 65.8
W/o compositional invariance module 69.5 73.0 65.9 64.3 78.1 61.5 72.9 71.2
W/o binary operator invariance module 74.6 75.8 69.3 67.1 86.2 70.2 77.3 76.7

Table 8. Detailed ablation study results of our algebraic machine reasoning framework, evaluated on the I-RAVEN dataset, in terms of the
overall answer-selection accuracy and the individual accuracies for all seven RPM configurations.

Algorithm 5 Detailed answer generation process.
Inputs: A concept matrix J = [J1,1, . . . , J3,2].

1: Compute comPos(J) = [p1, . . . , pk].
2: Iout ← ⟨0⟩.
3: for pi ∈ [p1, . . . , pk] do

// initialize with fixed “number” and “position”
4: I(i) ← ⟨xk−1xpi

⟩.
5: for K ∈ P(J̄(pi)

1 ) ∩ P(J̄(pi)
2 ) do

6: I∗ ← Output ideal generated based on one of the
Algorithms 1-4, given inputs K and J̄

(pi)
3 .

7: if I∗ ̸= ⟨0⟩ then
8: I(i) ← I(i) ∩ I∗

9: m← generator randomly selected from mingen(I(i)).
10: Iout ← Iout + ⟨m⟩.
11: G ← ∅
12: for m ∈ mingen(Iout) do
13: m′ ← m
14: while ∃ℓ ∈ L s.t. x does not divide m ∀x ∈ Aℓ do
15: x′ ← a variable randomly selected from Aℓ.
16: m′ ← m′x′.
17: G ← G ∪ {m′}.
18: Iout ← ⟨G⟩.
19: return Iout.

B.2.5 Overall process of answer generation

In the RAVEN/I-RAVEN dataset, the values for some at-
tribute within a panel may contain randomness by design.
For example, there do not exist rules for both “number”
and “position” to avoid conflicts, thus the entity positions
in a panel from some configurations (such as 2×2Grid,
3×3Grid, and Out-InGrid) could be totally random
once the number of entities is fixed. The values of other
attributes could also be random; see Figure 1 for example.
It is difficult to extract patterns from those concept matrices
with such random attribute values, and effectively impossi-
ble to generate an answer that matches the given correct an-
swer. Hence, for any given RPM instance, we shall simplify
the answer generation process by focusing on each single
position.

Figure 1. An example of a RPM instance with random values for
attributes “position”, “type” and “color”, within each panel. The
correct answer is marked with a red box.

Recall that for a concept matrix J representing a given
RPM instance, we extract the common patterns from each
concept matrix J̌ in an extended list of concept matrices,
i.e. [J, J̄(p1), Ĵ(p1), . . . , J̄(pk), Ĵ(pk)]; see Section 3.3.4 in
the main paper. Here p1, . . . , pk are the common positions
we extracted from the 8 panels of the question matrix cor-
responding to J, and all J̄(pt), Ĵ(pt) are defined as follows:

• Each concept J̄ (pt)
i,j in J̄(pt) is generated by the unique

generator in Ji,j that is divisible by pt;
• Each concept Ĵ (pt)

i,j in Ĵ(pt) is generated by all genera-
tors in Ji,j that are not divisible by pt.

In other words, for a common position pt, each panel in the
original question matrix is split into two panels, with one
panel containing only the entity in position pt (represented
by the corresponding concept in J̄(pt)), and the other panel
containing all the remaining entities (represented by the cor-
responding concept in Ĵ(pt)). In the answer generation task,
we shall consider only all J̄(pi) as discussed before. Intu-
itively, we can separately extract the patterns restricted to
each single common position, across the panels in the origi-
nal question matrix. Since the attributes “number” and “po-
sition” are inherently fixed within each J̄(pi), we only need
to extract patterns for the remaining 3 attributes. See Al-
gorithm 5 for details. Note that in Line 6 of Algorithm 5,
when generating the output ideal I∗, the exact algorithm
(from Algorithm 1-4) to apply to the inputs K and J̄

(pi)
3 is

uniquely determined by the syntax of K.



B.3. Examples for invariance modules

Consider the RPM instance depicted in Figure 2. (This
is the same as the running example in the main paper.) In
this subsection, we provide specific computational details
on this RPM instance to show how the invariance modules
are used to extract patterns, and generate the correct answer.

Example 1 (Intra-invariance module). Consider the
first row in Fig. 2. By extracting attribute values for enti-
ties in each panel via the object detection modules, we can
obtain the algebraic representation given as follows:

J1 := [J1,1, J1,2, J1,3],

J1,1 = ⟨xtwoxleftxsquarexblackxavg, xtwoxrightxtrianglexgrayxavg⟩,
J1,2 = ⟨xtwoxleftxpentagonxgrayxavg, xtwoxrightxsquarexgrayxavg⟩,
J1,3 = ⟨xtwoxleftxcirclexwhitexavg, xtwoxrightxpentagonxgrayxavg⟩.

We first compute pd(J+) and pd(J∩).

pd(J+) = {⟨xtwo⟩, ⟨xavg⟩, ⟨xleft, xright⟩, ⟨xwhite, xgray, xblack⟩,
⟨xtriangle, xsquare, xpentagon, xcircle⟩, ⟨xleft, xgray⟩,
⟨xsquare, xcircle, xgray⟩, ⟨xsquare, xwhite, xgray⟩
⟨xcircle, xgray, xblack⟩,
⟨xleft, xtriangle, xsquare, xpentagon⟩
⟨xright, xsquare, xpentagon, xcircle⟩
⟨xright, xsquare, xpentagon, xwhite⟩
⟨xright, xpentagon, xcircle, xblack⟩
⟨xright, xpentagon, xwhite, xblack⟩
⟨xtriangle, xsquare, xpentagon, xwhite⟩},

pd(J∩) = {⟨xtwo⟩, ⟨xavg⟩, ⟨xleft, xright⟩, ⟨xgray⟩,
⟨xtriangle, xsquare⟩, ⟨xsquare, xpentagon⟩,
⟨xpentagon, xcircle⟩, ⟨xleft, xtriangle⟩, ⟨xleft, xsquare⟩,
⟨xleft, xpentagon⟩, ⟨xright, xsquare⟩, ⟨xright, xpentagon⟩,
⟨xright, xcircle⟩, ⟨xright, xwhite⟩, ⟨xright, xblack⟩,
⟨xtriangle, xblack⟩, ⟨xpentagon, xwhite⟩}.

For those primary components that are contained in attribute
concepts, we have highlighted them in blue. These are the
concepts that are deemed “meaningful” for the RPM task.
Note that most of the primary components are not contained
in any attribute concept.

Next, we compute the set intersection pd(J+) ∩
pd(J∩) = {⟨xtwo⟩, ⟨xavg⟩, ⟨xleft, xright⟩}, which can be in-
terpreted to mean that all panels have two average-sized en-
tities, one on the left side and one on the right side.

Recall that the output of the intra-invariance module is:

Pintra([J1 . . . Jk]) :=
{

attr ∈ L | ∃I ∈ pd(J+) ∩ pd(J∩), I ⊆ ⟨Aattr⟩
}

.

Hence, we have

Pintra (J1) = {“size”, “number”, “position”}.

Figure 2. An example of RPM instance from the I-RAVEN dataset.
The correct answer is marked with a red box.

Example 2 (Inter-invariance module). Consider the
second row J2 in Fig. 2. Similarly, we first obtain the alge-
braic representation of J2:

J2 := [J2,1, J2,2, J2,3],

J2,1 = ⟨xtwoxleftxpentagonxwhitexsmall, xtwoxrightxpentagonxdgrayxsmall⟩,
J2,2 = ⟨xtwoxleftxcirclexblackxsmall, xtwoxrightxhexagonxdgrayxsmall⟩,
J2,3 = ⟨xtwoxleftxsquarexgrayxsmall, xtwoxrightxcirclexdgrayxsmall⟩.

Next, we compute pd(J+), pd(J∩) as follows:

pd(J+) = {⟨xtwo⟩, ⟨xsmall⟩, ⟨xleft, xright⟩,
⟨xwhite, xgray, xdgray, xblack⟩,
⟨xsquare, xpentagon, xhexagon, xcircle⟩,
⟨xleft, xdgray⟩, ⟨xleft, xpentagon, xhexagon, xcircle⟩,
⟨xright, xsquare, xpentagon, xcircle⟩,
⟨xright, xsquare, xpentagon, xblack⟩,
⟨xright, xsquare, xcircle, xwhite⟩,
⟨xright, xsquare, xwhite, xblack⟩,
⟨xright, xpentagon, xcircle, xgray⟩,
⟨xright, xpentagon, xgray, xblack⟩,
⟨xright, xcircle, xwhite, xgray⟩,
⟨xright, xwhite, xgray, xblack⟩,
⟨xsquare, xpentagon, xcircle, xdgray⟩,
⟨xsquare, xpentagon, xdgray, xblack⟩,
⟨xsquare, xcircle, xwhite, xdgray⟩,
⟨xsquare, xwhite, xdgray, xblack⟩,
⟨xpentagon, xhexagon, xcircle, xgray⟩,
⟨xpentagon, xcircle, xgray, xdgray⟩,
⟨xpentagon, xgray, xdgray, xblack⟩,
⟨xcircle, xwhite, xgray, xdgray⟩},



pd(J∩) = {⟨xtwo⟩, ⟨xsmall⟩, ⟨xleft, xright⟩, ⟨xpentagon⟩,
⟨xsquare, xcircle⟩, ⟨xhexagon, xcircle⟩,
⟨xwhite, xdgray⟩, ⟨xgray, xdgray⟩, ⟨xdgray, xblack⟩,
⟨xleft, xhexagon⟩, ⟨xleft, xcircle⟩, ⟨xleft, xdgray⟩,
⟨xright, xsquare⟩, ⟨xright, xcircle⟩, ⟨xright, xwhite⟩,
⟨xright, xgray⟩, ⟨xright, xblack⟩, ⟨xsquare, xdgray⟩,
⟨xhexagon, xblack⟩, ⟨xcircle, xgray⟩, ⟨xcircle, xdgray⟩}.

Similarly, we have indicated in blue those primary compo-
nents that are contained in attribute concepts.

Recall that the output of the inter-invariance module is:

Pinter([J1, . . . , Jk]) :=

{
(attr, I)

∣∣∣∣∣ I ⊆ pd(J∩)− pd(J+),
attr ∈ L, I ⊆ ⟨Aattr⟩ ∀I ∈ I

}
,

Hence Pinter(J2) is the following set with two pairs:{(
“color”, {⟨xwhite, xdgray⟩, ⟨xgray, xdgray⟩, ⟨xblack, xdgray⟩}

)
,(

“type”, {⟨xpentagon⟩, ⟨xsquare, xcircle⟩, ⟨xhexagon, xcircle⟩}
) }

.

The first pair encodes the information that the three ex-
tracted “color” concepts correspond to “white or dark
gray”, “gray or dark gray”, and “black or dark gray”. The
second pair encodes the information that the three extracted
“type” concepts correspond to “pentagon”, “square or
circle”, and “hexagon or circle”.

Example 3 (Compositional invariance module). Con-
sider the right subpanels of the first row J̄

(right)
1 in Fig. 2,

and ∆ = 1. We can generate the new row:

J̄ ′
1,1 = f2

next(J̄
(right)
1,1 |1) = ⟨xrightxonexpentagonxblackxsmall⟩,

J̄ ′
1,2 = fnext(J̄

(right)
1,2 |1) = ⟨xleftxtwoxpentagonxdgrayxlarge⟩,

J̄ ′
1,3 = J̄

(right)
1,3 = ⟨xrightxonexpentagonxgrayxavg⟩.

Recall that the output of the compositional invariance
module is:

Pcomp([J1, . . . , Jk]) :=

{
(attr, f)

∣∣∣∣∣ ∃I ∈
⋂k

i=1 pd(fk−i(Ji)),
attr ∈ L, I ⊆ ⟨Aattr⟩

}
.

Hence, we have Pcomp(J̄
(right)
1 ) = {(“type”, fnext|∆=1)},

which means that the “type” value (i.e. xpentagon) remains
invariant in the new row generated by fnext with step ∆ = 1.

Example 4 (Binary-operator module). Recall that the
output of the binary-operator module is:

Pbinary(Ji) :=

{
⊘

∣∣∣∣∣ ⊘ = [⊘1, . . . ,⊘k−2], ⊘i ∈ Λ,
g(J1)⊘1 · · · ⊘k−2 g(Jk−1) = g(Jk)

}
.

Let g be the real-valued function on concepts given by J 7→
|mingen(J)|. Note that for both rows J1 and J2 in Fig. 2,
every panel Ji,j has two entities, which can be computed as
g(Ji,j) = 2. Hence, if Λ = {+,−}, then Pbinary(J1) and
Pbinary(J2) are both empty.

Example 5 (Answer generation). For the example de-
picted in Fig. 2, we have comPos(J) = {xleft, xright}.
Note that J̄(xleft) = Ĵ

(xright). (The panel with only the left
entity is identical to the panel without the right entity.)
Hence we shall consider only the list of concept matrices
[J, J̄(xleft), J̄(xright)].

By applying the invariance modules iteratively, we can
then compute P1,2(J) := P (all)

1 (J) ∩ P (all)
2 (J), whose 13

elements are labeled as P1, . . . ,P13:

P1 =
(
“num”, J

)
P2 =

(
“num”, J̄(xleft)) P3 =

(
“num”, J̄(xright))

P4 =
(
“pos”, J

)
P5 =

(
“pos”, J̄(xleft)) P6 =

(
“pos”, J̄(xright))

P7 =
(
(“type”, {⟨xsquare⟩, ⟨xpentagon⟩, ⟨xcircle⟩}), J̄(xleft))

P8 =
(
(“type”, fnext|∆=1), J̄(xright)) P9 =

(
“color”, J̄(xright))

P10 =
(
(“color”, {⟨xwhite⟩, ⟨xgray⟩, ⟨xblack⟩}), J̄(xleft))

P11 =
(
“size”, J

)
P12 =

(
“size”, J̄(xleft)) P13 =

(
“size”, J̄(xright))

We can also generate the algebraic representations of the
first two panels in the 3rd row J3 := [J3,1, J3,2]:

J3,1 = ⟨xtwoxleftxcirclexavgxgray, xtwoxrightxpentagonxgrayxlarge⟩;
J3,2 = ⟨xtwoxleftxsquarexavgxwhite, xtwoxrightxhexagonxgrayxlarge⟩.

Among these 13 patterns, only P11 (the “size” values of
entities are invariant across each row in J) conflicts with
J3, as the “size” values of the two entities in J3,1 (or
J3,2) are different. Each remaining non-conflicting pattern
gives information about the corresponding attribute value
for J3,3. P1 to P6: two entities in J3,3, with one en-
tity on the left side and the other entity on the right side;
P7 ⇒ xpentagon for the left entity; P8 ⇒ xcircle for the right
entity; P9 ⇒ xgray for the right entity; P10 ⇒ xblack for the
left entity; P12 ⇒ xavg for the left entity; and P13 ⇒ xlarge
for the right entity. Consequently, we can collect all the
attribute values to form our generated answer concept

J ′
3,3 = ⟨xtwoxleftxpentagonxavgxblack, xtwoxrightxcirclexlargexgray⟩.

B.4. Ablation study

In order to study the effect of each invariance module,
we conducted an ablation study and evaluated the perfor-
mance of our algebraic machine reasoning framework on
the answer selection task; see Table 8.

For any given RPM instance, there could be a tie in
the comPattern list (defined in Algorithm 1 of the main
paper), i.e. there exist multiple entries in comPattern
with the same highest score. Recall that the i-th entry in
comPattern represents the number of extracted common
patterns across 3 rows, with the i-th answer option inserted
in the question matrix. Hence we report the weighted accu-
racies of our framework, defined as follows:

1

N

N∑
i=1

1

ni
,



Figure 3. A collection of the given answer images (top) and the corresponding generated images (bottom) for the first 10 I-RAVEN test
instances in each configuration. For those test instances for which our reasoning framework fails to extract non-conflicting patterns, the
output of Algorithm 5 would be Iout = ⟨0⟩; we have indicated such generated results as completely black panels.



where N denotes the total number of RPM test instances,
and ni represents the number of answer options with the
same highest score for the i-th test instance.

As shown in Table 8, the inter-invariance module has the
most significant contribution towards the final average ac-
curacy. Interestingly, this very same module allows us to
discover an unexpected new pattern as depicted in Figure 4
in the main paper, which is a rather natural pattern that hu-
man could conceivably think of, but which is not one of the
designed rules for I-RAVEN.

B.5. Examples of generated answers

To further evaluate the performance of our algebraic ma-
chine reasoning framework on the answer generation task,
we provide in Figure 3 the comparison between the given
correct answer images and our generated answer images for
the I-RAVEN dataset. For each configuration, we choose
the first 10 test files to show the comparison between the
given answer images and the generated images. (In the I-
RAVEN dataset, every 10 instances are split into 6 train-
ing instances, 2 validation instances, and 2 test instances.
Hence every test instance has a filename that ends with
“8 test” or “9 test”.)

From Figure 3, we can see that for the configura-
tions Center, Out-InCenter, Left-Right, and
Up-Down, our generated answers capture almost all salient
image attribute features, except for the angles of entities (i.e.
the orientation with respect to the panels) which is not in-
volved in any of the rules of RAVEN/I-RAVEN. However,
for the remaining configurations, our reasoning framework
is only able to generate a part of the answer. This is because
we simplified the answer generation process by separately
extracting patterns restricted to every single common posi-
tion, across the panels in the question matrix. Hence, for
those configurations where the RPM panels always contain
a fixed set of positions, our reasoning framework is able to
effectively extract the patterns and generate the correct an-
swer. On the other hand, for those configurations where the
RPM panels may contain an arbitrary set of positions, our
reasoning framework does not perform as well.

C. Further Discussion
C.1. Why is algebraic machine reasoning different

from logic-based reasoning?

Logic is the foundation of reasoning. Logic program-
ming [3, 20, 27] is a logic-based programming paradigm
that serves as the foundational computational framework for
logic-based reasoning methods. At the heart of these meth-
ods in logic-based reasoning is the idea that reasoning can
be realized very concretely as the resolution (or inverse res-
olution) of logical expressions. Inherent in this idea is the
notion of satisfiability; cf. [20]. Intuitively, we have a log-

ical expression, typically expressed in some canonical nor-
mal form, and we want to assign truth values (true or false)
to literals in the logical expression, so that the entire logi-
cal expression is satisfied (i.e. with truth value “true”). In
fact, much of today’s very exciting progress in automated
theorem proving [2, 19, 24, 26, 36, 45, 46, 48] is based on
logic-based reasoning.

In contrast, algebraic machine reasoning builds upon
computational algebra and computer algebra systems; cf.
Appendix A.2.2. As described in the main paper, at the
heart of our algebraic approach is the idea that reasoning
can be realized very concretely as solving computational
problems in algebra. Crucially, there is no notion of satisfi-
ability. We do not assign truth values (or numerical values)
to concepts in R = k[x1, . . . , xn]. In particular, although
primitive concepts ⟨x1⟩, . . . , ⟨xn⟩ in R correspond to the
variables x1, . . . , xn, we do not assign values to primitive
concepts. Instead, as we have emphasized in the main paper,
ideals are treated as the “actual objects of study”, and we re-
duce “solving a reasoning task” to “solving non-numerical
computational problems involving ideals”.

This contrast is perhaps even more evident when com-
paring algebraic machine reasoning to inductive logic pro-
gramming [33, 34]. Both seek to solve reasoning tasks in-
volving the discovery of new patterns, but they are funda-
mentally different approaches.

In inductive logic programming, we are given (as our
starting point) background knowledge B and examples E,
both in the form of logical formulas. For example, B could
be a conjunction of implications (p1∧· · ·∧pk → q), and E
could be a formula in conjunctive normal form. The goal is
to discover a hypothesis H , which is a logical formula that
must satisfy B∧H |= E (i.e. B∧H entails E). Informally,
we seek to discover a “good” hypothesis H that is consistent
with both background knowledge and examples. The key
technical challenge is to find a hypothesis H that is “good”
in a precise computable sense, from among the numerous
(potentially exponentially many) possible hypotheses. In
essence, inductive logic programming tackles this technical
challenge as a search-and-selection problem [22,34,38]: In
the space of all candidate hypotheses, search for a subset
of valid hypotheses; then within this subset, select a valid
hypothesis that maximizes or minimizes a pre-defined ob-
jective function (e.g. select H that minimizes Kolmogorov
complexity).

In contrast, algebraic machine reasoning is intrinsically
not search-based. When solving the RPM task, the new
patterns discovered are computed via algebraic computa-
tions. For the RPM answer generation task, we generate
answers to RPM instances not by searching for valid an-
swers in the (huge) space of all candidate answers, but by
directly computing our answer. Pattern discovery becomes
computing: We are computing various primary decomposi-



tions, and computing which of the primary components are
contained in attribute concepts. For the RPM answer selec-
tion task, we solve it as a “compute-and-select” problem.
For the RPM answer generation task, we compute attribute
values from the extracted patterns wherever possible, and
randomly select attribute values for those attributes of enti-
ties not involved in the extracted patterns.

When solving RPMs, if we try to frame the reasoning
process of our algebraic approach in a language similar
to inductive logic programming, then have the following:
Given an RPM instance represented as a concept matrix
J, we extract patterns P1,2(J) from the first two rows of
J; here P1,2(J) takes the role of “background knowledge”.
We then systematically check if the extracted patterns con-
flict with concepts J3,1, J3,2 (representing the two panels in
the 3rd row of the question matrix); the patterns that can
be extracted from [J3,1, J3,2] take the role of “examples”.
Finally, we wish to discover a suitable concept J3,3 for the
missing 9-th panel; here J3,3 takes the role of “hypothesis”.

However, a closer look would reveal several disparities
in our attempted analogy. We seem to have analogous no-
tions for “background knowledge”, “examples” and “hy-
pothesis” from the set-up of inductive logic programming,
yet what we call “background knowledge” (i.e. the ex-
tracted patterns P1,2(J)) is not given prior knowledge, but
must be computed. Similarly, the “examples” are not given
prior knowledge, but are extracted patterns from [J3,1, J3,2]
that must be computed. To discover a “hypothesis”, we are
not searching for it, but computing it. Effectively, the com-
mon missing ingredient for making this “analogy” proper
is algebraic computations, which is the essence of algebraic
machine reasoning.

C.2. Potential societal impact of algebraic machine
reasoning

Algebraic machine reasoning could potentially help to
automate “easier” reasoning tasks currently performed by
humans. In education, algebraic machine reasoning could
help with the design of better intelligence tests. In finance,
our framework could help in processing personal bank loan
applications or detecting fraud, based on invariant features
of such cases. A negative implication, however, could also
be present. Our reasoning process is based on extracting
patterns from a few examples (as in the RPM task) and then
generalizing. If the cases of bank loan applications or fraud
have already been unfairly associated with certain socio-
economic groups, then that inequity would be propagated
even in our reasoning framework.

Another potential downstream application of our frame-
work is in medical diagnostics. Diagnostic decision mak-
ing, based on a patient’s reported symptoms and past med-
ical history, could be modeled as reasoning tasks. Spe-
cific symptoms and medical conditions could be encoded as

concepts and a final medical diagnosis could potentially be
computed. If properly implemented, an algebraic machine
reasoning framework for medical diagnosis would signifi-
cantly speed up the diagnostic decision-making process, as
well as reduce the cost of medical diagnostics. Unfortu-
nately, such an application, while bringing clear benefits,
also comes with ethical concerns. If a wrong medical diag-
nosis is made, when a doctor uses algebraic machine rea-
soning to aid in diagnostic decision-making, who gets the
blame? Will the creators of the reasoning framework be li-
able for legal action?

Biasness could also be inherent in the human encoding
process of a machine reasoning framework. If concepts
encoded reflect extant human bias, then reasoning output
could be flawed, yet seemingly “reasonable”. For any future
application of algebraic machine reasoning to legal or crim-
inal cases, care must be taken in assessing and processing
information (concepts) associated with each counter-party.
Though fairness is outside the scope of our framework, our
approach could highlight potential misuses.

Lastly, since algebraic machine reasoning is able to sur-
pass human performance on the RPM task (an intelligence
test originally designed to evaluate geeral human intelli-
gence and abstract reasoning), our work is effectively crack-
ing open one of the biggest bastions of human cognition.
This may inadvertently contribute towards the fear by the
general public, of AI outcompeting humans. One way to
mitigate this is through education and outreach to demys-
tify algebraic machine reasoning.
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