
DisCoScene: Spatially Disentangled Generative Radiance Fields
for Controllable 3D-aware Scene Synthesis Supplementary Materials

Yinghao Xu1,2 Menglei Chai2 Zifan Shi3 Sida Peng4

Ivan Skorokhodov5,2 Aliaksandr Siarohin2 Ceyuan Yang1 Yujun Shen1

Hsin-Ying Lee2 Bolei Zhou6 Sergey Tulyakov2

1CUHK 2Snap Inc. 3HKUST 4ZJU 5KAUST 6UCLA

G
S
N

O
u
rs

Clevr 3D-Front

Figure 1. Qualitative comparison between DisCoScene and GSN. All images are in 256× 256 resolution.

1. Overview

This supplementary material is organized as follows.
We first introduce the discussions (Sec. 2) and additional
comparison with pioneer works (Sec. 3). Then, we also
present more implementation details of our DisCoScene
(Sec. 4) and baseline approaches (Sec. 5), followed by
details of data preparation (Sec. 6). We also evaluate
the efficiency of our rendering pipeline against the naı̈ve
implementation (Sec. 7). Finally, we show additional results
on various 3D manipulation applications to evaluate the
flexibility and effectiveness of our approach (Sec. 8), as the
attached demo video id170 demo.mp4.

2. Discussions with Related work.

Canonical Space and Spatial Condition. Canonical
Space is a common representation for objects. Following
many recent works [9, 10], we also adopt canonical space
for object modeling. The difference is that we alleviate the
view directions and rely on the upsampler to model view-
dependent effects. Ray-AABB Algorithm [8] is originally
proposed for efficient voxel rendering in graphics. We
leverage it to improve the rendering efficiency, similar to
recent works like NSVF [7] and [10] We use Spatial
Condition to encode proper semantics for each object in 3D-

Front only due to its complex layouts, while [10] uses it
to model object-scene interaction and global illumination.
Besides location [10], we also use the scale to provide
spatial cues.
GIRRAFE. We train GIRAFFE on our own CLEVR
dataset using official code rather than pre-trained models.
We tried hard yet couldn’t produce equally good results as
shown in the paper in Fig. 2. The reason why GIRAFFE
doesn’t work well on Waymo is that the layouts sampled
from human-designed priors do not fit real distributions. It
also lacks object-level supervision, while ours benefits from
the local-global discrimination. Besides, the renderer and
upsampler are not as powerful as ours, harming the training
convergence and performance.

3. Additional Comparison

Qualitative Comparison with GSN [2]. Here, we also
include GSN to compare with our method in Fig. 1. GSN
highly depends on the training camera trajectories. Thus
in our setting, where the camera positions are randomly
sampled, it suffers from poor image quality and multi-view
consistency. *

*We fail to train GSN on CLEVR and WAYMO with the official
implementation, hence we do not report the quantitative results.

1

https://github.com/apple/ml-gsn
https://github.com/apple/ml-gsn

O
u

rs
G

IR
A

F
F

E
O

u
rs

G
IR

A
F

F
E

Origin Obj Rot Origin Obj Trans Origin Obj Rot Origin Obj Trans

Figure 2. Comparison with GIRAFFE on all datasets. All images are in 256× 256 resolution

O
ri
g
in
a
l

R
es
ty
li
n
g

Figure 3. Well-Curated recoloring results on 3D-FRONT and WAYMO

Qualitative Comparison with GIRAFFE [9]. We also
supplement the comparison results with GIRRAFE on
CLEVR and 3D-FRONT in Fig. 2. Even in these diagnostic
datasets, GIRRAFFE also suffers from inconsistency when
editing the object pose and location. However, DisCoScene
always synthesizes very realistic objects whatever the rota-
tion and translation are carried out on the objects.
Restyling Results. Although we don’t model the object’s
shape and color explicitly with specific latent codes, we
can still achieve disentangled control over color and shape
using a hierarchical latent space. However, this approach
can sometimes result in minor artifacts. To demonstrate
the control over recoloring objects, we provide additional
curated samples in Fig. 3.

4. Implementation Details of DisCoScene
Background with NeRF++ [14]. The outdoor datasets, i.e.
WAYMO, have unbounded backgrounds. It is insufficient to
model the whole scene in the image within a fixed bounding
box. Therefore, we inherit the inverse parametrization of
NeRF++ to model the background in WAYMO:

x = (x/r, y/r, z/r), (1)

where r = ||x||2. The background points are uniformly
sampled in an inverse depth range of [1/R, 0) where R =
2.0 denotes the starting depth of the background.
Constant Latents for Upsampler. We adopt similar
architecture and parameters of the synthesis network from

StyleGAN2 [6] as the upsampler for the rendered 2D feature
map. Note that since our model handles multiple radiance
fields, different spatial locations of the convolution feature
maps should be modulated by different w codes belonging
to specific objects, making it costly to upsample the feature
map. Thus we disable the spatial-aware modulation by set-
ting w as a constant tensor with value 1, which significantly
reduces the computation overhead.

5. Implementation Details of Baselines

Because of the wildly divergent data distribution, the
training parameters vary greatly on different datasets. Tab. 1
and Tab. 2 list the detailed training configurations of dif-
ferent datasets for each baseline. FOV, Rangedepth, and
#Steps denote the field of view, the depth range, and the
number of sampling steps along a camera ray, respectively.
Rangeh and Rangev denote the horizontal and vertical angle
ranges of the camera pose ξ. Sample Dist denotes the
sampling scheme of the camera pose. We only use Gaussian
or uniform sampling in our experiments. λ is the loss weight
of the gradient penalty.
VolumeGAN [13]. We use the official implementation of
VolumeGAN.† We train VolumeGAN with 25K images.
The coordinates range of feature volume is adjustable for
different datasets. We adopt the training configuration in
Tab. 1 to train VolumeGAN models.

†https://github.com/genforce/volumegan

https://github.com/genforce/volumegan

Table 1. Training configurations regarding different datasets for VolumeGAN and EpiGRAF.

Datasets FOV Radius Rangedepth #Steps Rangeh Rangev Sample Dist λ
CLEVR 12.0 1.0 [0.8, 1.2] 24 [π/2− 0.5, π/2 + 0.5] [π/4− 0.15, π/4 + 0.15] Uniform 1
3D-FRONT 12.8 1.0 [0.7, 1.3] 24 [0, 2π] [3π/8− 0.2, 3π/8 + 0.2] Uniform 1
WAYMO 12.0 1.0 [0.7, 1.3] 24 [π/2− 0.5, π/2 + 0.5] [π/2− 0.15, π/2 + 0.15] Uniform 1

Table 2. Training configurations regarding different datasets for EG3D.

Datasets FOV Radius Rangedepth #Steps Rangeh Rangev Sample Dist λ
CLEVR 18.0 1.7 [0.1, 2.6] 96 [π/2− 0.5, π/2 + 0.5] [π/4− 0.15, π/4 + 0.15] Uniform 2
3D-FRONT 18.8 2.7 [2.2, 3.3] 96 [0, 2π] [3π/8− 0.2, 3π/8 + 0.2] Uniform 2
WAYMO 18.0 1.7 [0.1, 2.6] 96 [π/2− 0.5, π/2 + 0.5] [π/2− 0.15, π/2 + 0.15] Uniform 5

EpiGRAF [11] We use the official implementation of
EpiGRAF.‡ We inherit the patch-wise training scheme to
train EpiGRAF with the same data and camera parameters
at the target resolution shown in Tab. 1.
EG3D [1]. We use the official implementation of EG3D. §

Different from VolumeGAN and EpiGRAF, EG3D renders
the whole radiance field within a bounding box, so we in-
herit the larger camera radius than the ones of EpiGRAF and
VolumeGAN for training. Since the original EG3D requires
pose annotations for training, we add a pose sampler in it
to enable the training on all three datasets as the global
annotations are not always available. We adjust the loss
weight of gradient penalty on different datasets to achieve
the best performance. Hyperparameters used for training
are available in Tab. 2
GSN [2]. We use the official GSN implementation.¶. GSN
highly dependents on input camera sequences and we find
it very difficult to converge at a narrow camera distribution,
i.e. WAYMO and CLEVR. On 3D-FRONT, we set the length
of camera sequence to 1, and it can converge to some extent.
We don’t leverage depth supervision for a fair comparison
with our method.
GIRAFFE [9]. We use the official implementation of
GIRAFFE.|| The number of boxes for training follows the
configuration of ours on each dataset. The bounding box
generator of GIRAFFE is tuned specifically for each dataset
for a fair comparison.

6. Data Preparation
Clevr [5]. We use the official script [5] to render scenes
with Cube, Cylinder, and Sphere primitives. The camera
position is jittered in a small scale. And the dataset is
rendered in a 256× 256 resolution with 80K samples.
3D-Front [3, 4]. We use BlenderProc to render 20 images
per room in 3D-FRONT. We move the center of each

‡https://github.com/universome/epigraf
§https://github.com/NVlabs/eg3d
¶https://github.com/apple/ml-gsn
||https://github.com/autonomousvision/giraffe

Table 3. Ablation analysis of efficient rendering (ER).

TR.↓ INF.↓
w/ ER w/o ER w/ ER w/o ER

CLEVR 18.1 29.2 95 180
3D-FRONT 22.3 38.1 110 330
WAYMO 19.2 30.9 100 195

room to the coordinate origin and then sample the camera
positions on the upper sphere between 2r to 3r where r is
the diagonal length of room.
Waymo [12]. We only keep the front view of WAYMO for
the model training. However, there exist lots of occluded
and noisy cars in WAYMO, we design several heuristic rules
to filter it. Specifically, we require the camera depth of car
is less than 40m and the area of cars is larger than 40000
pixels in original image size (1920× 1280). We then adopt
the black padding to make images square and then resize it
in to 256× 256 resolution.

7. Efficiency of Rendering Pipeline
Naı̈ve point sampling solutions where the density and

color of spatial points are inferred with multiple object radi-
ance fields can lead to prohibitive computational overhead.
Therefore we propose an efficient rendering pipeline by
only focusing on the valid points within the bounding boxes.
Tab. 3 presents the training cost in V100 days and testing
cost in ms/image (on a single V100 over 1K samples)
with our efficient rendering and Naı̈ve rendering. Our
rendering pipeline can handle multiple objects efficiently,
with nearly 1.5 and 2 times faster training and inference
speed, respectively.

8. Additional Results
We include a demo video, which shows more results

of various 3D manipulation applications. From the video,
we can see that our method both achieves good genera-
tion quality and enables precise object control. We also
include comparisons with the state-of-the-art methods, i.e.,

https://github.com/DLR-RM/BlenderProc
https://github.com/universome/epigraf
https://github.com/NVlabs/eg3d
https://github.com/apple/ml-gsn
https://github.com/autonomousvision/giraffe
https://www.youtube.com/watch?v=Fvenkw7yeok

EG3D [1] and GIRRAFE [9], in the video.

References
[1] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In IEEE
Conf. Comput. Vis. Pattern Recog., 2022. 3, 4

[2] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,
Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
Int. Conf. Comput. Vis., 2021. 1, 3

[3] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia,
Binqiang Zhao, et al. 3d-front: 3d furnished rooms with
layouts and semantics. In IEEE Conf. Comput. Vis. Pattern
Recog., 2021. 3

[4] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang
Zhao, Steve Maybank, and Dacheng Tao. 3d-future: 3d
furniture shape with texture. Int. J. Comput. Vis., 2021. 3

[5] Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In IEEE Conf.
Comput. Vis. Pattern Recog., 2017. 3

[6] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In IEEE Conf. Comput. Vis.
Pattern Recog., 2020. 2

[7] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances in
Neural Information Processing Systems, 2020. 1

[8] Alexander Majercik, Cyril Crassin, Peter Shirley, and Mor-
gan McGuire. A ray-box intersection algorithm and efficient
dynamic voxel rendering. Journal of Computer Graphics
Techniques Vol, 2018. 1

[9] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In IEEE Conf. Comput. Vis. Pattern Recog., 2021. 1, 2, 3, 4

[10] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 2856–2865,
2021. 1

[11] Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Peter
Wonka. Epigraf: Rethinking training of 3d gans. In Adv.
Neural Inform. Process. Syst., 2022. 3

[12] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In IEEE Conf.
Comput. Vis. Pattern Recog., 2020. 3

[13] Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, and
Bolei Zhou. 3d-aware image synthesis via learning structural
and textural representations. In IEEE Conf. Comput. Vis.
Pattern Recog., 2022. 2

[14] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 2

