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In this supplementary material, We give more details on
the 3D shape generator GS (Sec. A), the shape embedding
mapping network GM (Sec. B), the process of fine-tuning
Stable Diffusion (Sec. C), and the process of 3D optimiza-
tion with shape prior (Sec. D). We also provide additional
results on text-guided shape generation (Sec. E) and text-to-
3D synthesis (Sec. F). Then, we give some discussions on
integrating single-view reconstruction (SVR) methods into
our framework (Sec. G). Finally, we give the full list of text
prompts we utilized to evaluate the CLIP retrieval precision
(Sec. H).

A. Details of 3D Generator GS

We adopt the architecture of SDF-StyleGAN [18] as our
3D generator. As Fig. 1 shows, it maps a random noise
z ∼ N (0, I) to a latent shape embedding eS ∈ W and
synthesizes a 3D feature volume F V , which is an implicit
representation of the generated shape. We can query the
SDF value at arbitrary position x by feeding the interpo-
lated feature from F V at x into a jointly trained MLP net-
work. During training, a global discriminator and a local
discriminator are used simultaneously to supervise the gen-
erated SDF grids at the coarse and fine level respectively.
Different from the original SDF-StyleGAN that trains one
network for one shape category, we train one 3D shape gen-
erator GS on 13 categories of the ShapeNet [1] dataset to
enlarge the shape generation capability.

B. Details of Shape Embedding Mapping Net-
work GM

The shape embedding mapping network GM is a
diffusion-model-based generative network that can gener-
ate shape embeddings eS from the CLIP image embeddings

*Work done during an internship at ARC Lab, Tencent PCG.
†Corresponding Author.

Model Parameter Value Training Parameter Value
timesteps 100 iterations 500,000
beta schedule cosine max grad norm 0.5
predict x start True batch size 1024
cond drop prob 0 learning rate 1.1× 10−4

dim 512 weight decay 6.02× 10−2

depth 6 ema beta 0.9999
dim head 64 ema update every 10
heads 8 Adam β1, β2 0.9, 0.999

Table 1. Model details and training hyper-parameters of the shape
embedding mapping network GM .

Background FID ↓
Solid white 60.61
Solid green 71.04
Random-color 33.71

Table 2. The Fréchet Inception Distance (FID) between the shape
renderings used for fine-tuning and the images synthesized by the
fine-tuned Stable Diffusion.

eI of shape renderings. The network architecture and train-
ing strategy of GM are based on an open-source DALL-E-
2 [12] implementation*. Specifically, GM is equivalent to
the diffusion prior network in DALL-E-2 which generates
CLIP image embeddings from CLIP text embeddings. Here
we replace the input with CLIP image embeddings of shape
renderings and the output with shape embeddings. We use
the DiffusionPrior class in the codebase to implement GM

and the train diffusion prior.py script to train GM . The
model and training hyperparameters are listed in Tab. 1.

C. Details of Fine-tuning Stable Diffusion
In our framework, we connect the text and image modal-

ities by fine-tuning the Stable Diffusion into a stylized gen-

*https://github.com/lucidrains/DALLE2-pytorch
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Figure 1. The network architecture of the 3D generator based on SDF-StyleGAN [18].

(a) Solid white background.

(b) Solid green background.

(c) Random-color background.

Figure 2. The results of fine-tuning Stable Diffusion using shape
renderings with different backgrounds. For each type of back-
ground, we visualize the shape renderings used to fine-tune Stable
Diffusion on the left and the images synthesized by the fine-tuned
Stable Diffusion on the right.

erator with a set of shape renderings {Ij
S}

NS
j=1 and give it

the ability to synthesize images in the “rendering” style. In
experiments, we find it crucial to utilize a large set of shape
renderings for fine-tuning and to augment the backgrounds
of the shape renderings with random colors.

We tried fine-tuning Stable Diffusion using shape ren-
derings with three different types of backgrounds: 1)
solid white background, 2) solid green background and 3)

random-color background. We visualize the shape render-
ings used for fine-tuning and the images synthesized by
the fine-tuned Stable Diffusion in Fig. 2. As Fig. 2a and
Fig. 2b show, although shape renderings with solid-white
or solid-green backgrounds can make the fine-tuned Stable
Diffusion capture the “rendering” style of the object suc-
cessfully, the backgrounds in the synthesized images are
out of control, i.e., the fine-tuned Stable Diffusion fails to
synthesize images with solid-color backgrounds. This will
increase the difficulty of separating the foreground objects
from the backgrounds and affect the stability of the sub-
sequent image-to-shape generation since the shape embed-
ding mapping network GM is trained on shape renderings
with solid-color backgrounds. In comparison, augmenting
the backgrounds of the shape renderings with random colors
leads to a stable stylized generator that can synthesize solid-
color-background images consistently, as Fig. 2c shows.

During fine-tuning, we indeed expect the Stable Diffu-
sion model to capture two types of styles: 1) the “render-
ing” style of the foreground object and 2) the “solid-color”
style of the background. Similar to the observation that the
foreground “rendering” style requires a large set of rendered
images to learn, we consider that a single-color background
is too few to be recognized as a “solid-color background
style” by the Stable Diffusion model, while showing a lot
of different solid-color examples to the model can make it
notice the solid-color background style and capture it dur-
ing fine-tuning.

To better demonstrate the importance of the random-
color background augmentation, we also evaluate the
Fréchet Inception Distance (FID) between the shape ren-
derings used for fine-tuning and the images synthesized by
the fine-tuned Stable Diffusion in Tab. 2. For each type of
background, we render 1000 images with that background
for each ShapeNet [1] category, forming a shape render-
ing dataset containing 13000 images in total (denoting as
DS). Then we leverage DS to fine-tune the Stable Diffu-
sion model for 5000 steps, and utilize the fine-tuned Sta-
ble Diffusion to synthesize 100 images for each shape cate-
gory using the text prompt ”a CLS in the style of *”, lead-



ing to a set of 1300 generated images (denoting as Dgen).
Finally, we compute the FID between DS and Dgen. As
Tab. 2 shows, augmenting the backgrounds of shape render-
ings with random colors significantly boosts the FID, which
demonstrates its effectiveness.

D. Details of 3D Optimization with 3D Shape
Prior

D.1. DVGO-based Volume Rendering

In the optimization stage, we adopt DVGO [15] as our
3D scene representation which represents NeRF [9] with a
density voxel grid V density ∈ RNx×Ny×Nz and a shallow
color MLP network frgb for efficient optimization. Given a
3D position x, we query its density σ and color c by:

σ̃ = interp(x,V density), (1a)
σ = softplus(σ̃) = log(1 + exp(σ̃ + b)), (1b)
c = frgb(γ(x)), (1c)

where γ(·) denotes a positional encoding function.
interp(·) denotes the trilinear interpolation. The shifted
softplus function softplus(·) is applied to transform the raw
density value σ̃ into activated density value σ (i.e., a map-
ping of R → R≥0), the shift b is a hyperparameter. To be
noted, the density grid V density stores the raw density values
instead of the activated ones. DVGO [15] calls the scheme
of interpolating on the raw density values first and then per-
forming softplus activation as ”post-activation” and demon-
strates its advantages on producing sharper shape bound-
aries over other choices.

To render the color of a pixel Ĉ(r), we cast the ray r
from the camera center through the pixel, and sample K
points between the pre-defined near and far planes. We then
query the densities and colors of the K ordered sampled
points {(σi, ci)}Ki=1 using Eq. (1). Finally, we accumulate
the K queried results into a single color with the volume
rendering process:

Ĉ(r) =

(
K∑
i=1

Tiαici

)
+ TK+1cbg, (2a)

αi = alpha (σi, δi) = 1− exp (−σiδi) , (2b)

Ti =

i−1∏
j=1

(1− αj) , (2c)

where αi denotes the opacity representing the probability
of termination at point i, Ti denotes the accumulated trans-
mittance from the near plane to point i, δi denotes the dis-
tance to the adjacent sampled point, and cbg demotes a pre-
defined background color.

Following DVGO, all values in V density are initialized as

step=0 step=5000

Figure 3. Illustration on 3D optimization with 3D shape prior. The
text prompt is ”A lamp imitating sunflower”. We visualize the
contours of the density grid (up) and the volume-rendered images
(bottom) at the 0th and 5000th optimization steps to show how the
density grid is initialized and optimized.

0 and the bias term in Eq. (1b) is set to

b = log
(
(1− αinit)

− 1
s − 1

)
, (3)

where αinit is a hyperparameter and is set to 10−6 in prac-
tice. With such an initialization, the accumulated transmit-
tance Ti is decayed by 1−αinit ≈ 1 for a ray that traces for-
ward a distance of a voxel size s, making the scene “trans-
parent” at the beginning of optimization.

D.2. Shape Prior Initialization and Optimization

A big difference between our text-guided 3D synthesis
framework and previous methods [4–6] is that we use an
explicit 3D shape prior to initialize the CLIP-guided op-
timization process, instead of optimizing from a randomly-
initialized 3D representation. Given a 3D shape prior S rep-
resented by an SDF grid Ṽ sdf ∈ RNx×Ny×Nz , we use it to
initialize the density voxel grid V density with the following
equations [11, 15, 17]:

Σ =
1

β
sigmoid

(
− Ṽ sdf

β

)
, (4a)

V density = max(0, softplus−1(Σ)), (4b)

where sigmoid(x) = 1/(1 + e−x) and softplus−1(x) =
log(ex − 1). Eq. (4a) converts SDF values to activated den-
sity values (equivalent to the σ in Eq. (1b)), where β > 0
controls the sharpness of the shape boundary, and smaller
β leads to a sharper shape boundary. We set β = 0.05 in
our experiments. Eq. (4b) further transforms the activated
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Figure 4. Additional text-guided shape generation results. All
meshes are extracted at 643 resolution.

density values into raw density values (equivalent to the σ̃
in Eq. (1a)).

With such an initialization, the density values on the
shape surface will be close to 1

2β (log(exp( 1β ·sigmoid(0))−
1) ≈ 1

2β ). The area inside the shape surface will have larger
density values (> 1

2β ), and the density values outside the
shape will decrease with the distance from the shape sur-
face. We set the minimum density value outside the shape
to 0 so the area far from the shape surface has the same
initialization as the original DVGO.

As Fig. 3 shows, at the beginning of the 3D optimization
process (step=0), the 3D shape prior is visible due to the
larger density values around the shape surface. As a result,
the area around the shape surface will dominate the volume
rendering, and the density/color values in this area will be
updated faster than the area far from the surface. Based on
the initialization, Then subsequent CLIP-guided optimiza-
tion process further provides more flexibility and is able to
synthesize more diverse structures and textures.

E. Additional Results on Text-to-Shape Gener-
ation

We show additional qualitative text-guided 3D shape
generation results in Fig. 4. Compared to CLIP-Forge [13],
our method produces more plausible 3D shapes thanks to
the high-quality 3D generator, while the shapes generated
by [13] suffer from rough surfaces and discontinuities.

Besides, we also provide more quantitative comparisons
with CLIP-Forge on text-to-shape generation. We generate
3 shapes for each text prompt in the text prompt set pro-
vided by CLIP-Forge and measure three metrics: 1) Fréchet
Inception Distance (FID) [3] between 5 rendered images

Method FID ↓ FPD ↓ MMD ↑
CLIP-Forge [13] 112.38 6.896 0.670
Ours 40.83 1.301 0.725

Table 3. Additional quantitative results compared with CLIP-
Forge on text-guided shape generation.

for each shape with different camera poses and a set of im-
ages rendered from the ground truth shapes in the ShapeNet
dataset with the same camera poses. 2) Fréchet Point Dis-
tance (FPD) [14], for each generated shape and each ground
truth shape in the ShapeNet test set, we extract the mesh at
643 resolution and sample 2048 points from the mesh sur-
face, then pass the points to a DGCNN [16] backbone net-
work pre-trained on the point cloud classification task and
use the feature of the last layer to compute this metric. 3)
Maximum Measure Distance (MMD), for each generated
shape represented by a 323 occupancy grid, we match a
shape in the ShapeNet test set based on the highest IOU,
and then average the IOU across all the text queries. As
Tab. 3 shows, our text-to-shape generation method outper-
forms CLIP-Forge on all three metrics.

F. Additional Results on Text-to-3D Synthesis
In this section, we show additional qualitative compari-

son results on text-to-3D synthesis with baseline methods in
Fig. 5 and more diversified generation results of our method
in Fig. 6. It can be seen that our method can synthesize plau-
sible 3D structures with the help of 3D shape priors.
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Figure 5. Additional qualitative comparisons on text-guided 3D synthesis. For each of our results (the last row), we also visualize the 3D
shape prior used to initialize the CLIP-guided optimization process below it.



“A car from the future.” “A race car.” “A car from the Cars 
movie.”

“A camouflaged 
armored vehicle.”

“A lamp imitating a 
Christmas tree.”

“A lamp imitating a 
mushroom.”

“A lamp imitating a 
rocket.”

“A lamp imitating an 
umbrella.”

“A wide screen TV 
playing Avatar.”

“A wide screen TV 
playing a football 

match.”

“A wide screen TV 
playing Tom and Jerry.”

“A wide screen TV 
playing Interstellar.”

“A cabinet designed by 
van Gogh.”

“An old wooden 
cabinet.”

“A steel cabinet.” “A glass cabinet full of 
clothes inside.”

“A chair imitating 
cactus.”

“A chair made of 
bamboo.”

“A frozen ice chair.” “A chair overgrown with 
vines.”

“An aircraft carrier.” “A spaceship in the 
Star War.”

“A luxury cruise ship.”

“A car.”

“A lamp.”

“A wide screen TV.”

“A cabinet.”

“A chair.”

“A boat.” “A large cargo ship.”

“A monster truck 
imitating Optimus 

Prime.”

“A monster truck 
imitating tiger.”

“A monster truck 
imitating snail.”

“A monster truck 
imitating monster.”

“A monster truck.”

Figure 6. Additional text-to-3D synthesis results. We visualize the 3D shape prior used for optimization in the first column.



G. Integration with SVR Models

G.1. Text-to-Shape Generation using SVR models

Single-view reconstruction (SVR) models can recon-
struct a 3D shape from a single input image. We then ask,
can we use an SVR model directly as the image-to-shape
module in our framework? To answer this question, we
conduct the same fine-tuning process to fine-tune a Stable
Diffusion model with the ShapeNet renderings provided by
Choy et al. [2] on which many common SVR models are
trained. We find that although the shape renderings in Choy
et al. [2] have more complex textures, the fine-tuned model
can still capture the style successfully and synthesize novel
images imitating the style. With such a fine-tuned Stable
Diffusion, we can solve the text-to-shape generation in a
precise way: synthesize an image using the fine-tuned Sta-
ble Diffusion with text prompt in the format of ”a CLS in
the style of *”, and then directly feed the synthesized im-
age into the SVR model. We show some text-guided shape
generation results using two SVR methods, i.e., occupancy
networks [8] and DVR [10], in Fig. 7 and Fig. 8, respec-
tively. Both methods are trained with the shape renderings
provided by Choy et al. [2]. The occupancy networks only
predict shape, while DVR can predict both shape and color.
As Fig. 7 and Fig. 8 show, we achieve text-to-shape genera-
tion successfully with the synthesized images, which proves
the strong generation ability of Stable Diffusion and the ef-
fectiveness of our proposed fine-tuning pipeline.

A recent work named ISS [7] also utilizes an SVR model
to perform text-to-shape generation. However, the pipeline
of ISS is much more complicated. It trains a mapper net-
work to map CLIP features to the latent space of the SVR
model, which requires a two-stage fine-tuning to align the
text and shape feature spaces. At inference time, ISS needs
to fine-tune the mapper network for each text prompt, which
is redundant in our pipeline. With the help of the fine-tuned
Stable Diffusion, we can directly generate an image from
the text prompt and feed the image into the SVR model to
synthesize a 3D shape. Besides, thanks to the strong genera-
tion ability of Stable Diffusion, we can enjoy a much larger
generation diversity and synthesize as many 3D shapes as
we want for each text prompt.

G.2. Text-to-3D Synthesis using SVR models

Despite the success in text-guided shape generation with
SVR models, we find that current SVR models are very
sensitive to the input images. Although we can success-
fully capture the style of the shape renderings using the
fine-tuned Stable Diffusion, some minor flaws in the syn-
thesized images such as offsets of the objects from the im-
age center and unrealistic artifacts (e.g., a chair lacks a leg)
are inevitable. These minor flaws may lead to failed shape
reconstructions, whose quality affects 3D shape priors. This

“A boat with sail” “A children chair with little legs”

“A swivel chair”

“A mushroom-like lamp”

“A wooden table”

“A sofa with legs”

Figure 7. Text-guided shape generation using fine-tuned Stable
Diffusion and Occupancy Networks [8]. For each text prompt, we
visualize the image synthesized by the fine-tuned Stable Diffusion
on the left and the reconstructed shape on the right.

“A green SUV” “A computer monitor”

“A red recliner seems comfortable”

“Lamp supported by a long pillar”

“A round shaped single legged 
wooden table”

“A long luxury black car”

Figure 8. Text-guided shape generation using fine-tuned Stable
Diffusion and DVR [10]. For each text prompt, we visualize the
image synthesized by the fine-tuned Stable Diffusion on the left
and the reconstructed shape on the right.

sensitiveness makes the 3D prior generation in the first stage
of our framework unstable. Therefore, we choose to use a
3D generator associated with a shape embedding mapping
network to generate 3D shapes in the latent shape embed-
ding space, instead of directly using an SVR model in our
framework.

We visualize six text-to-3D synthesis results using 3D
shape priors produced by the occupancy networks [8] in
Fig. 9. The successful results in the first two rows show
the probability of integrating as SVR model into our frame-
work. In the last row, we show two failure cases in which
the SVR model fails to reconstruct plausible 3D shape pri-
ors to illustrate the drawbacks of using SVR models. We
can observe that the discontinuity in the “bedside lamp”



“A minecraft suv.” “A wooden boat floating on the water.”

“A sofa made of bricks.” “A wooden table with metal legs.”

“A bedside lamp emitting warm lights.” “A large monster truck.”

Figure 9. Text-to-3D synthesis results using occupancy networks. For each text prompt, we visualize the shape rendering image synthesized
by the fine-tuned Stable Diffusion on the left, the shape reconstructed by the SVR model in the middle, and the optimization result on the
right. The last row shows two failure cases.

shape leads to discontinuity in the final optimization result,
while the failed truck shape results in total chaos.

H. Text Prompt for Evaluation
We design a set of text prompt containing common ob-

jects in ShapeNet categories to evaluate the CLIP retrieval
precision metric for baseline methods and our approach
(Table 1 in the main manuscript). The full set of 92 text
prompts we utilized is listed in Tab. 4.



A park bench overgrown with vines. A round chair designed by Van Gogh. A comfortable sofa is burning.
A park bench overgrown with roses. A round chair designed by Einstein. A minecraft comfortable sofa.
A park bench covered with snow. A round chair designed by Van Gogh and Einstein. A wide screen TV playing cartoon show of Tom and Jerry.
A park bench covered with tiger skin. A round chair is burning. A wide screen TV playing weather forecast.
A park bench designed by Van Gogh. A minecraft round chair. A wide screen TV playing breaking news.
A park bench designed by Einstein. A throne overgrown with vines. A wide screen TV playing The Avengers.
A park bench designed by Van Gogh and Einstein. A throne overgrown with roses. A wide screen TV playing a horror movie.
A park bench is burning. A throne covered with snow. A bus covered with assorted colorful graffiti on the side of it.
A minecraft park bench. A throne covered with tiger skin. A bus covered with advertisement for coca cola on the side of it.
A car overgrown with vines. A throne designed by Van Gogh. A bus covered with an apple symbol on the side of it.
A car overgrown with roses. A throne designed by Einstein. A bus covered with American flag.
A car covered with snow. A throne designed by Van Gogh and Einstein. A fighter jet is flying at a fast speed.
A car covered with tiger skin. A throne is burning. A fighter jet is firing ahead.
A car designed by Van Gogh. A minecraft throne. A fighter jet performing tricks with smoke coming off of it.
A car designed by Einstein. The Iron Throne in Game of Thrones. There are some colorful lights hanging from a street lamp.
A car designed by Van Gogh and Einstein. A desk overgrown with vines. There are some warm lights hanging from a street lamp.
A car is burning. A desk overgrown with roses. There are some cold lights hanging from a street lamp.
A minecraft car. A desk covered with snow. There are some colorful lights hanging from a bedside lamp.
An airplane overgrown with vines. A desk covered with tiger skin. There are some warm lights hanging from a bedside lamp.
An airplane overgrown with roses. A desk designed by Van Gogh. There are some cold lights hanging from a bedside lamp.
An airplane covered with snow. A desk designed by Einstein. A fisherman stands on a fishing boat floating on the water.
An airplane covered with tiger skin. A desk designed by Van Gogh and Einstein. The dishes are neatly arranged behind the glass cabinet doors.
An airplane designed by Van Gogh. A desk is burning. A park bench sits under a tree with the sun shining.
An airplane designed by Einstein. A minecraft desk. A table for playing foosball.
An airplane designed by Van Gogh and Einstein. A comfortable sofa overgrown with vines. A table for playing ping pong.
An airplane is burning. A comfortable sofa overgrown with roses. A cat is sleeping comfortably on the cushion of chair.
A minecraft airplane. A comfortable sofa covered with snow. A lamp imitating sunflower.
A round chair overgrown with vines. A comfortable sofa covered with tiger skin. A plane imitating an eagle.
A round chair overgrown with roses. A comfortable sofa designed by Van Gogh. A plane imitating a dragon.
A round chair covered with snow. A comfortable sofa designed by Einstein. A truck imitating a crocodile.
A round chair covered with tiger skin. A comfortable sofa designed by Van Gogh and Einstein.

Table 4. The text prompt dataset used to evaluate the CLIP retrieval precision metric.
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