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This supplementary mainly contains the following con-
tents. First of all, in Sec.1, we perform comparisons with
more learning paradigms for oriented object detection, em-
pirically and experimentally. Then, to supplement the
DGMM and GJSD’s advantages over other counterparts,
we provide more experimental and theoretical analyses in
Sec. 2. Following this, more visualization results of pre-
dictions and sampled positive priors are shown in Sec. 4.
Therein, more intuitive results further verify the DCFL’s
superiority in detecting oriented tiny objects. Finally, we
illustrate two typical failure cases of the DCFL and the po-
tential future work in Sec. 7.

1. More Comparisons

We compare with more learning paradigms in this sec-
tion. Here we summarize previous works of oriented ob-
ject detection into four categories, their schematic diagrams
are shown in Fig. 1. The first one is the fixed paradigm,
which lays a solid foundation for effective oriented object
detection, representative works include the RetinaNet [11],
FCOS [17], and Rotated RPN [12], they statically assign
labels between fixed priors and fixed gts via a hand-craft
heuristic. Hence, their samples for each gf remain the same
in different iterations, and they are unable to adaptively fil-
ter out low-quality positive samples which fall on the back-
ground.

The second paradigm explores better alignment between
the prior and gt, where detectors update the prior during dif-
ferent iterations. Among them, the S2A-Net [7] introduces
an anchor refinement network to generate high-quality an-
chors, then a fixed label assignment rule is applied, ob-
taining dynamic samples during the network learning. Al-
though samples can be dynamic at different iterations, the
detector cannot adaptively identify positive samples that fall
on the object’s background since the assignment rule re-
mains fixed.

The third paradigm excavates a better utility of the fixed
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Figure 1. Comparisons of different learning paradigms for ori-
ented object detection. M* means the matching function. (a) Reti-
naNet, FCOS, and Rotated RPN statically assign labels between
fixed priors and fixed grs. (b) SZA-Net statically assigns labels
between the learnable anchors and gts. (c) DAL dynamically
reweights fixed anchors. (d) Our proposed DCFL dynamically up-
dates priors and gts, and dynamically assigns labels.

prior, where the detector’s prior location is fixed while the
dynamic assignment rule is employed to sample or measure
these fixed anchors in a prediction-aware manner. For ex-
ample, the DAL [13] fixes the position of each anchor and
then designs a matching degree to dynamically reweight
anchors. Therefore, the importance of high-quality sam-
ples can be highlighted when the network gradually con-
verges. However, the position of each feature and prior re-
mains fixed. Although they can achieve a better separation
of pos/neg samples according to the instance’s semantic pat-
tern, most positive samples deviate from the tiny object’s
main body. That means prior and feature themselves cannot
well-match the extreme shapes of oriented tiny objects, no
matter how we divide pos/neg samples.

By contrast, our proposed DCFL further releases the
flexibility of the network by updating the prior, positive
samples, and gt representation during the network training.
To begin with, the DCFL enables the detector to dynami-
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Figure 2. Statistical analysis of imbalance issues. The first and
second columns show quality and quantity imbalance respectively.

Method ‘ Circle RBox Single-G  Shrink-G DGMM
mAP ‘64.36 66.91 66.97 67.81 68.41

Table 1. Comparison of different instance representations for pos-
terior constraint.

cally update the prior location and feature sampling region
that better fits the objects’ characteristics. Simultaneously,
the DCFL ensures a dynamic label assignment by the dy-
namic gt representation, getting rid of the samples that are
away from the instance’s main body.

In this part, we perform more statistical experiments of
the S?A-Net [7] since it is one of the state-of-the-art meth-
ods that shows competitive performance on the DOTA-v2.0.
As shown in Fig. 2, it is easy to conclude that the S2A-
Net performs much better than the baseline RetinaNet [1 1],
compared to Fig. 6 in the main paper. Nevertheless, the
DCEFL still exhibits better sample quality and sample quan-
tity compared to the S?A-Net. Concretely, as implied in the
left part of Fig. 2, the sample quality of the DCFL is slightly
higher than the S?A-Net across almost all angles and scales.
While the right part of Fig. 2 indicates that there still ex-
ist severe imbalance issues in the S2A-Net which guides
the network optimization focus on larger objects, although
it can compensate more positive samples for the network
training.

2. More Analyses
2.1. Dynamic Gaussian Mixture Model

We perform more detailed ablations to verify the advan-
tages of the Dynamic Gaussian Mixture Model (DGMM).
The advantages of utilizing the DGMM as a posterior con-
straint can be summarized into higher accuracy, faster con-
vergence, and finer representation compared to other coun-
terparts.

In Tab. 1, we report the performance of different in-
stance representations for the posterior constraint. In this
table, the “Circle” means eradicating positive samples out-
side the gf box’s minimum circumcircle, the “RBox” means
directly filtering out positive samples outside the gt’s rect-
angle bounding box, the “Single-G” means modeling the
box into single Gaussian distribution and filtering out sam-
ples outside gr boxes’ minimum circumscribed ellipse, the
“Shrink-G” means shrinking the region of the “Single-G”
via the same threshold e™9 as the DGMM. All models are
trained on the DOTA-v1.0 train set and evaluated on
the val set. We can see that the proposed DGMM gets
the highest mAP among all choices, we attribute the per-
formance improvement of the DGMM to its ability to dy-
namically capture the high response area of a specific gf,
which better fits an object’s semantic pattern. By contrast,
other counterparts mainly rely upon the strong heuristic that
objects are located at the center region of a given rectangle
bounding box, yielding sub-optimal accuracy.

Besides the enhanced final accuracy, we also observe
that the DGMM can facilitate the model’s convergence. We
show a comparison of epoch-aware mAP between a com-
petitive counterpart “Shrink-G” and the proposed DGMM
in Fig. 3. We can find that the DGMM significantly fa-
cilitates the model’s convergence at early training epochs,
where there is a boost of more than 5 mAP points. This
can also be attributed to the DGMM’s ability to retain high-
quality samples. More precisely, the samples falling on the
low response region can be filtered out by the DGMM, en-
suring the stability and consistency of positive samples and
leading to better convergence.

At last, apart from the accuracy improvement brings to
the detector, the DGMM itself is a finer representation of
the objects, which can fit the main body of the objects com-
pared to the rectangle box. Please refer to Sec. 4 for more
visualization results.

2.2. Generalized Jensen-Shannon Divergence

We present the theoretical analyses of the properties of
Generalized Jensen-Shannon Divergence (GJSD), namely
the scale-invariance, symmetry, and capability of measuring
non-overlapping boxes.

First of all, note that the GJSD score in the main paper is
calculated by simply normalizing the GJSD:

1
1+ GJSD’ M
since positive samples are obtained through a ranking man-
ner, the introduced constant 1 in the denominator will not
affect the performance. Then, we normalize the Wasser-
stein distance [15] and Kullback-Leibler divergence [©] in
the same way to compare their difference.

As demonstrated in the previous work [14], the Gen-
eralized Jensen Shannon Divergence inherits the scale in-
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Figure 3. A comparison of the convergence between different in-
stance representations.

variance property of the Jensen-Shannon Divergence [5,
]. Specifically, suppose we have two Gaussian distri-
butions N, (p,,, 2,) and Ny(p,, Xg).  We then multi-
ply the box’s center point and side length by a full-rank
scale factor S = kI (I denotes identity matrix) [20],
getting Ny (S, $3,S8") and Ny (Spy, S3,87), the
scale invariance of GJSD means that GJISD(N||N,) =
GJSD(N,y || Ny/). Then, we experimentally investigate the
scale invariance property in Fig. 4 (a). It can be seen that
when we multiply the center points and the side length of
the bounding boxes by a scale factor, the GISD score re-
mains constant, and the scale invariance is thus verified.

The symmetry of GJSD means that given two dis-
tributions NV, (p,, 2y), we have GISD(N,|INy) =
GJSD(N,||N,). By contrast, the Kullback-Leibler diver-
gence is asymmetric.

Moreover, the GJSD can measure the similarity of non-
overlapping boxes. As shown in Fig. 4 (b), we keep the
blue box fixed and move away the yellow box away from
the blue box’s center, we can see that the GJSD score keeps
changing even if boxes do not overlap. However, the IoU
metric remains constant when boxes do not overlap.

In addition, we experimentally observe that the GJSD
can distinguish some cases that cannot be handled by the
KLD [20] and GWD [19], which might serve as one of the
reasons for its superiority over the KLD and GWD in label
assignment. Specifically, as shown in Fig 4 (c), we keep the
square blue box ((czp, cyp, wp, hp, ) is (50, 50,40, 40, 0))
fixed, and keep the center and side length of the yellow box
fixed ((czy, cyy, wy, hy, 0y) is (70, 70, 40, 40, angle)), then
we rotate the yellow box. From Fig 4 (c), we can see that
the GJSD successfully distinguishes different angles, while
other distribution distances (GWD, KLD) all fail.

3. Detailed Data Descriptions

Experiments are performed on five datasets, including
four oriented object detection datasets: DOTA-v1.0 [18],
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Figure 4. Properties of the GJSD.

Dataset ‘ 10-50 pixels ~ 50-300 pixels > 300 pixels
DOTA-v1.0 [18] 57% 41% 2%
DOTA-v1.5 [3] 79% 20% 1%
DOTA-v2.0 [3] 7% 22% 1%

Table 2. The absolute object size distribution of the DOTA series.

DOTA-v1.5, DOTA-v2.0 [3], DIOR-R [2] and one horizon-
tal small object detection dataset: VisDrone2019 [4]. These
datasets all contain a considerable ratio of tiny objects, we
report their detailed information in this section.

DOTA-v1.0 [ 18] is a large-scale dataset dedicated to ob-
ject detection in aerial images. DOTA-v1.0 contains 2806
images ranging from 800 x 800 to 4000 x 4000 pixels,
where 1/2, 1/6, and 1/3 of the images are officially divided
as the training set, validation set, and testing set, respec-
tively. There are total of 15 common categories and 188,
282 instances in this dataset. As shown in Tab. 2, 57% ob-
jects are smaller than 50 pixels, which indicates that there
are many tiny objects in this dataset.

DOTA-v1.5 [3] is the later version of the DOTA-v1.0
and they share the same images along with the image set
splits. However, DOTA-v1.5 additionally provides the an-
notations of tiny objects compared to DOTA-v1.0. More-
over, DOTA-v1.5 provides a new category named “con-
tainer crane”. In total, there are 403, 318 instances, where
most of them are tiny objects as shown in Tab. 2.

DOTA-v2.0 [3] is the latest version of the DOTA se-
ries. To date, it is the largest dataset for Object Detec-
tion in Aerial Images (ODAI), there are 18 common cat-
egories, 11,268 images (in the range from 800 x 800 to
20,000 x% 20, 000 pixels), and 1,793,658 instances in DOTA-
v2.0, which is much larger than the previous two versions.
Concretely, 1,830 images, 593 images, 2,792 images, and
6,053 images are officially chosen as the training set, vali-
dation set, test-dev set, and test-challenge set, respectively.
Also, it is worth noting that there are a large proportion of
tiny objects, where 77% objects are smaller than 50 pixels.
Considering that it is the largest dataset for ODAI and most
of the objects in it are of tiny size, it is employed in the main
experiments in this study.

DIOR-R [2] is the oriented version of the DIOR [10].



Figure 5. More visual results of predictions. The first row is the result of the RetinaNet-OBB while the second row is the result of the
DCFL. TP, EN, and FP predictions are marked in green, red, and blue respectively.

Therefore, DIOR-R and DIOR contain the same images
but different annotations, where objects in the DIOR-R are
annotated with the oriented bounding box. DIOR-R has
23,463 images of 800 x 800 pixels and 192, 518 instances,
covering 20 common object categories. DIOR-R also con-
tains many tiny objects, where the windmill, bridge, and ve-
hicle are three classes of the smallest sizes [10]. Hence, we
report the mAP and classwise AP of the windmill, bridge,
and vehicle of DIOR-R.

VisDrone2019 [4] is an UAV dataset for object detec-
tion. It is annotated by horizontal bounding boxes, cov-
ering 10,209 images with 10 categories. Captured in dif-
ferent places at different heights, objects in VisDrone2019
have large-scale variance and complex backgrounds, where
many objects also exhibit extremely tiny scales.

4. More Visual Results
4.1. Detection Results

We provide more visualization of detection results in
this section. In Fig. 5, the extensive visualization results
can further support the superiority of the DCFL in detect-
ing oriented tiny objects. Especially, we can see that the
DCFL can alleviate both false positive and false negative
predictions, for example, the oriented small vehicles and
ships. This mainly results from the improvement of sample
quantity and sample quality, as analyzed in Fig. 2. In other
words, the balanced training of diverse instances and high-
quality samples provided by the coarse-to-fine assigner sig-
nificantly optimize the learning of extreme-shaped objects.

4.2. Positive Samples

We provide the visualization of more sampled positive
priors in this section. As shown in Fig. 6, it is clear that

Figure 6. Visualization of sampled positive priors.

the generated prior positions are arbitrarily distributed, get-
ting rid of the fixed feature stride constraint, and providing
more possibility for tiny object feature sampling. It can also
be seen that the sampled positive priors better match the in-
stance’s main body, thus, the learning of the model is guided
to focus on the strong semantic region.

5. Discussions

5.1. Failure Cases

We illustrate these two failure cases in Fig. 7. The first
one is that the performance of the DCFL is not satisfactory
in the densely arranged scene. When objects are densely
arranged, there may exist spatial feature aliasing [6] issues,
leading to sub-optimal feature extraction and object loca-
tion. Moreover, the post-processing NMS is a local optimal
algorithm, which is not density-aware. Hence, some redun-
dant predictions cannot be successfully deleted in this pro-
cess. The second failure case is that the DCFL cannot eas-
ily handle weak objects. Compared to normal tiny objects,
weak objects are even more lacking in appearance infor-
mation, making the network hard to extract discriminative
features.
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Figure 7. Failure cases.

5.2. Future Work

First of all, the proposed learning scheme could be fur-
ther exploited to adapt to multi-stage object detectors. For
example, the region proposal network [16] can be modified
as the coarse matching process and the R-CNN [16] can
serve as the finer matching process. One could even design
a cascaded framework [1] to make the learning of objects
finer and finer.

In addition, as implied in the failure cases, future work
can be focused on resolving densely arranged objects and
weak tiny objects. For example, we can combine the one-
to-one assignment which is NMS-free and the many-to-one
assignment which holds state-of-the-art performance to im-
prove the detection performance in the densely arranged
scenario. Besides, we can embed super-resolution strate-
gies into the end-to-end object detection pipeline to enhance
weak objects’ features, improving weak objects’ detection
performance.
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