EqMotion: Equivariant Multi-agent
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— Supplementary Material —

A. Theoretical Proofs

In this section, we prove Theorem 1 in our paper which
shows EqMotion’s equivariance property and the interaction
reasoning module’s invariance property. Note that, here we
treat all the vectors to be row vectors since we multiply the
rotation matrix by right.

1. For the initialization layer Jiy,(-), the initial geomet-
ric feature is equivariant and the initial pattern feature is
invariant:

GOR +t, HY = F(XR + t).
Proof: For the ith agent, we show its initial geometric fea-
ture is equivariant to the input motion under Euclidean trans-
formation. When transforming the past motion, we have

Ginit_g (X;R+t) —XR +t)) + XR+ t
= Winit_g((xiR - XR)) +XR+t
= (Winit_¢(X; = X) +X)R + ¢
=GOR +t
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Thus we show the initial geometric feature is equivariant to
the input motion under Euclidean transformation. We also
show its initial pattern feature is invariant to the input motion
under Euclidean transformation. When transforming the past
motion, we have,

A (XZR + t) = A(XZ)R =V,R,

IVIR|Z=VIRRTV! = VIVIT = ||V!|2 =,
VIR(VITIR)T

IVIR|2][ VIR

VIRRTV!~1T viyi-t’

CIVEHRIIVE 2 IVE ]l VE:

= angle(Vﬁ,Vf_l) = 9;&,

Ginit_n([pis0i]) = hio).

angle(VIR, VI7'R) =
2)

Thus we show the initial pattern feature is invariant to the
input motion under Euclidean transformation.
2. The reasoning module Fign(-) along with reasoned

interaction categorical vectors {c;; } is invariant:
{Cij} = .FIRM(G(O)R + t, H(O))

Proof: We first show the column-wise /5-distance of geo-
G(O) l|2,cor 18 invariant since for the

ctheolumn (¢ =1,---,C), wehaveHg ‘R+t— (g (O)R+

t)ll> = llgl R — g R]l> = |lgl") — g}||2. Since the
initial pattern feature is invariant, thus we have the edge
feature m, ;- the aggregated edge feature p; and the updated
node feature h’, all to be invariant. Finally, we have the in-
teraction categorical c;; vector being invariant since h} and

G — GF‘O) ||2,co1 are invariant,
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3. The /th geometric feature learning layer fg()}FL () is
equivariant:

GUYIR +t = Flpo (GOR + t, HO, {cy;}).

Proof: We show the result by indicating the inner-agent
attention, inter-agent aggregation and non-linear function all
to be equivariant. We first show the inner-agent attention is
equivariant. When transforming the input geometric feature,
for every ith agent ¢ = 1,2, --- , M),

600 (GUR+t— CR+1)+ G R+t
= m") - (@ -THR+ TR+
wﬁﬂﬂh(GW—@mywﬁ%R+t
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Thus the inner-agent attention is equivariant. We then show
the inter-agent aggregation is equivariant. When transform-
ing the input geometric feature, we show the column-wise
{5-distance of geometric feature ||GEZ) G;Z) l|2,col 18 in-
variant since for the cth column (¢ = 1,--- ,C), we have
87R + ¢ — R + 0)l2 — g//R - g Rll: ~

I g(/) gyc) ||2. Thus the learned aggregation weights ez(f)

is invariant. We have the inter-agent aggregation’s equivari-



ance,
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Thus the inner-agent attention is equivariant. We then show
the non-linear function is equivariant. When transforming
the input geometric feature, the inner product of the query

coordinate and the key coordinate (qgfc), kifc) ) = 5[2 kz(i)
is invariant for every channel ¢ = 1,2, --- | C since
WO (GR+t - G R+1)) = Q“R,
WO GOR+t- TR +t) =KYR (5)
QRKR) =Q"RRTK = Q“ KO

We also can have the equivariance of the two equations under
different conditions,
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(6)
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Since the criterion is invariant and two equations under two
conditions are both equivariant, the non-linear function is
equivariant. Finally, combining the equivariance of inner-
agent attention, inter-agent aggregation and nonlinear func-
tion, we show the equivariance of the geometric feature
learning layer.
4. The /fth pattern feature learning layer fl(lf,)FL(-) is in-
variant:
HOD = 7O (GOR + ¢, HO).
Proof: Similar with the invariance of reasoning module, we
first have the column-wise /5-distance of geometric feature

||G(-Z) - G(-Z) [|2,co1 is invariant Thus we have the variable
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in the message passing m;;’, p; ~ all invariant. Finally the

next layer’s pattern feature h(‘*1) is invariant.
5. The output layer Fror(+) is equivariant:

YR+t = Feon(GHR + t).
Proof: When transforming the input geometric feature,

FroL(GHR 4 t)
= (Wour(GOR+t— CT'R+1t) + TR+ ¢
= (Wou(GP —CN + T )R +¢
=YR+t
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Thus the output layer is equivariant.

B. Optional Operations
B.1. DCT Processing

To have a compact representation of input motion data,
here we apply an optional discrete cosine transform (DCT)
along the time axis to convert the input motion into the
frequency domain. Mathematically, for the input motion
X; of agent i, we transform it by X; + Wpcr(X; — X)
where Wpep € RT*Tr s the DCT coefficients matrix.
Correspondingly, we transform the predicted motion by an
inverse DCT (iDCT) operation: Y — WIDCTY + X and
Wiper € RTxTr ig the iDCT coefficients matrix. The
remove-and-add operation about the mean location X is to
ensure the translation equivariance. Since the DCT process
is equivariant, adding this process will maintain whole net-
work’s equivariance.

B.2. Adding Velocity Information

We also introduce an optional operation to directly add
the velocity information into the geometric feature by

G ¢,(p:) + G, ©)

where p; is the velocity magnitude sequence and function
¢, (+) is implemented by MLP. Since the velocity magnitude
sequence is invariant, thus the operation is equivariant. This
operation is placed before the nonlinear function.

C. Modification for Multi-prediction

To make EqMotion perform multiple predictions in pedes-
trian trajectory prediction, we slightly modify the network by
using multiple prediction heads in parallel. Each prediction
head consists of a feature learning layer and an output layer.
Assuming the ith output produced by the :th prediction head
is @, we use a minimum /5 prediction loss formulated by,

£ =min|lY - Yi[3. (10)

Through the loss, the optimal prediction will be optimized.



D. Experiment Details
D.1. Dataset Description
D.1.1 Particle Dynamics

We use the particle N-body simulation environment [6] in a
3-dimensional space similar to [3, | |]. The system contains
5 interacted particles. In the reasoning task, in the Springs
simulation, particles will be randomly connected by a spring
with a probability of 0.5. The particles connected by springs
interact via forces given by Hooke’s law. In the Charged
simulation, particles will be randomly charged or uncharged.
The charged particles will repel or attract others via Coulomb
forces. The probability of positive charged, uncharged and
negative charged is 0.25, 0.5, and 0.25. We predicted the
future motion of 20 timestamps given the historical obser-
vations of 20 timestamps. We use a downsampling rate of
100. We use 5k, 2k and 2k samples for training, validating
and testing, respectively. In the prediction task, the setting is
similar except the probability of positive charged, uncharged
and negative charged is 0.5, 0, and 0.5.

D.1.2 Molecule Dynamics

We adopt the MD17 [2] dataset which contains the motions
of different molecules generated via a molecular dynamics
simulation environment. The goal is to predict the motions of
every atom of the molecule. We randomly pick four kinds of
molecules: Aspirin, Benzene, Ethanol and Malonaldehyde.
We learn a prediction model for each molecule. We predicted
the future motion of 10 timestamps given the observation
of 10 timestamps. The raw data is a long sequence and
we sample the trajectory with a sampling rate of 20 and
a sampling gap of 400. We randomly pick 5k, 2k and 2k
samples for training, validating and testing.

D.1.3 3D Human Skeleton Motion

Human 3.6M (H3.6M) dataset [5] contains 7 subjects per-
forming 15 classes of actions, and each subject has 22 body
joints. All sequences are downsampled by two along time.
Following previous paradigms [8, 9], the models are trained
on the segmented clips in the 6 subjects and tested on the
clips in the 5th subject.

D.1.4 Pedestrian Trajectories

ETH-UCY dataset [7, 10], contains 5 subsets, ETH, HO-
TEL, UNIV, ZARAI, and ZARA2. In the dataset, pedestrian
trajectories are captured at 2.5Hz in multi-agent social sce-
narios. Following the standard setting [ 1,4, 12], we use 3.2
seconds (8 timestamps) to predict the 4.8 seconds (12 times-
tamps). We use the leave-one-out approach, training on 4
sets and testing on the remaining set.

Table 1. Effect of different numbers of learning layers on H3.6M.
160ms 320ms 400ms Average

1 9.5 214 46.7 583 34.0
9.3 20.7 454 56.5 33.0
9.1 20.3 443 55.7 324
9.1 20.1 43.7 55.0 32.0
9.1 20.2 43.9 55.2 32.1

Layers | 80ms

AR W

D.2. Implementation Details

In all the experiments, we set the number of feature learn-
ing layers L to 4. We use the Adam optimizer to train the
model on a single NVIDIA RTX-3090 GPU. All the MLPs
have 2 layers with a ReLU activation function.

Particle Dynamics We set the number of coordinates in the
geometric feature C' as 64 and the dimension of the pattern
feature D as 64. The predefined category number L is 2. We
set the batch size to 50 and use a learning rate of 5e-4. The
model is trained for 200 epochs.

Molecule Dynamics We set the number of coordinates in the
geometric feature C' as 64 and the dimension of the pattern
feature D as 64. The predefined category number L is 2. We
set the batch size to 50 and use a learning rate of 5e-4. The
model is trained for 300 epochs.

Human Skeleton Motion For short-term motion prediction,
we set the number of coordinates in the geometric feature C'
as 72 and the dimension of the pattern feature D as 64. The
predefined category number L is 4. We set the batch size
to 100 and use a learning rate of 5e-4. The model is trained
for 80 epochs. For long-term motion prediction, we set the
number of coordinates in the geometric feature C' as 96 and
the dimension of the pattern feature D as 64. The predefined
category number L is 4. We set the batch size to 100 and
use an initial learning rate of 5e-4 with a decay rate of 0.8
for every 2 epochs. The model is trained for 100 epochs.

Pedestrian Trajectories We set the number of coordinates
in the geometric feature C' as 64 and the dimension of the
pattern feature D as 64. The predefined category num-
ber L is 4. We set the batch size to 100 and use an ini-
tial learning rate of 8e-4/5e-4/1e-3/5e-4/1e-3 with a decay
rate of 0.8/0.8/0.95/0.8/0.9 for every 2/2/2/2/2 epochs on
eth/hotel/univ/zaral/zara2 subsets, respectively. The model
is trained for 50 epochs.

E. Further Experiment Results

Different numbers of layers Table 1 shows the effect of
different numbers of feature learning layers L on the H3.6M
dataset. We find that 1) initially increasing L leads to better
performance as a more comprehensive geometric feature and
pattern feature will be learned; and ii) when the number of
layers is sufficient, the performance tends to be stable.



Table 2. Comparisons of short-term prediction on Human3.6M. Results at 80ms, 160ms, 320ms, 400ms in the future are shown.

Smoking Discussion

400 80 160 320 400 80 160 320 400

68.7 [23.0 426 701 827 [ 329 612 909 962
407 | 79 162 319 389 [ 125 274 585 717
439 | 90 176 321 403 [ 173 348 610 69.8
404 | 80 163 313 382 [ 120 268 571  69.7
38.1 6.6 141 282 347 [ 100 238 536 667
379 | 67 138 280 346 | 104 238 53.6 67.1
365 | 55 113 23.0 293 | 82 188 421 539

Phoning Posing

400 80 160 320 400 80 160 320 400

1425 1 38.0 693 1150 126.7 | 36.1 69.1 1305 157.1
934 | 102 21.0 425 523 [ 137 299 66.6 84.1
132.1 | 125 25.8 481 583 | 153 293 715 96.7
934 | 101 207 415 513 [ 128 294 670 850
87.1 83 183 387 484 | 107 257 60.0 76.6
86.4 | 87 183 387 485 | 107 253 599 76.5
852 [ 74 167 369 470 | 82 189 434 575

Sittingdown Takingphoto

400 80 160 320 400 80 160 320 400

Motion Walking Eating
millisecond 80 160 320 400 80 160 320
Res-sup. 294 508 76.0 815 [ 16.8 306 569
Traj-GCN 123 230 398 46.1 84 169 332
DMGNN 173 307 546 652 [ 11.0 214 362
MSRGCN 122 227 386 452 | 84 17.1 330
PGBIG 102 19.8 345 403 | 7.0 151  30.6
SPGSN 10.1 194 348 415 | 7.1 149 305
EqMotion(Ours) [ 9.0 17.5 32.6 39.2 6.3 13.6 289

Motion Directions Greeting

millisecond 80 160 320 400 80 160 320
Res-sup. 354 573 763 877 [ 345 634 1246
Traj-GCN 9.0 199 434 537 | 187 387 717
DMGNN 13.1 246 647 819 | 233 503 1073
MSRGCN 86 197 433 538 | 165 370 773
PGBIG 72 17.6 409 515 | 152 341 71.6
SPGSN 74 172 398 503 | 146 32,6 70.6
EqMotion(Ours) | 6.3 158 389 50.1 | 12.7 30.1 68.3

Motion Purchases Sitting
millisecond 80 160 320 400 80 160 320
Res-sup. 363 603 865 959 [ 426 814 1347

Traj-GCN 156 328 657 793 | 106 219 463
DMGNN 214 387 757 927 | 119 251 446
MSRGCN 148 324 66.1 796 | 105 220 463

151.8 | 473 86.0 1458 1689 | 26.1 47.6 814 947
579 | 161 31.1 615 755 [ 99 209 450 56.6
502 [ 150 329 771 930 [ 13.6 29.0 460 588
578 [ 161 316 625 768 [ 99 210 446 563
53.8 | 139 279 574 715 | 84 189 420 533
536 | 142 277 568 707 | 88 189 415 527
529 [13.0 265 562 70.7 | 7.9 177 409 528

Walking Together Average

400 80 160 320 400 80 160 320 400

PGBIG 125 287 601 733 | 88 192 424
SPGSN 128 286 61.0 744 | 93 194 423
EqMotion(Ours) | 11.2  26.8 60.5 75.2 8.1 18.0 41.2
Motion Waiting Walking Dog
millisecond 80 160 320 400 80 160 320
Res-sup. 306 57.8 1062 1215 | 642 102.1 141.1
Traj-GCN 114 240 501 615 | 234 462 835
DMGNN 122 242 596 775 | 471 933 160.1
MSRGCN 10.7 23.1 483 59.2 (207 429 804
PGBIG 89 20.1 436 543 | 188 393 737
SPGSN 92 198 431 541 | 17.8 372 717

EgqMotion(Ours) | 7.6 174 399 511 | 16.6 364 725

1644 | 26.8 50.1 802 922 | 347 620 101.1 1155
96.0 | 10.5 21.0 385 452 | 127 26.1 523 635
1712 | 143 267 50.1 632 | 17.0 33.6 659 79.7
933 | 10.6 209 374 439 [ 121 256 516 629
86.4 | 87 18.6 344 410 | 103 2277 474 585
849 | 89 182 338 409 | 104 223 471 583
8.2 | 78 161 30.6 37.1 | 91 201 43.7 55.0

Table 3. Comparisons of long-term prediction on Human3.6M. Results at 560ms and 1000ms in the future are shown.

Motion Walking Eating Smoking Discussion Directions Greeting Phoning Posing

millisecond 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms

Res-Sup. 81.7 100.7 79.9 100.2 94.8 137.4 121.3 161.7 110.1 152.5 156.3 184.3 143.9 186.8 165.7 236.8
Traj-GCN 54.1 59.8 53.4 71.8 50.7 72.6 91.6 121.5 71.0 101.8 115.4 148.8 69.2 103.1 114.5 173.0
DMGNN 71.4 85.8 58.1 86.7 50.9 72.2 81.9 1383 102.1 135.8 144.5 170.5 71.3 108.4 125.5 188.2
MSRGCN 527 63.0 52.5 77.1 49.5 71.6 88.6 117.6 71.2 100.6 116.3 147.2 68.3 104.4 116.3 174.3
PGBIG 48.1 56.4 511 76.0 46.5 69.5 87.1 118.2 69.3 100.4 110.2 143.5 65.9 102.7 106.1 164.8
SPGSN 46.9 53.6 49.8 73.4 46.7 68.6 89.7 118.6 70.1 100.5 111.0 143.2 66.7 102.5 110.3 165.4

EqMotion(Ours) | 43.4 52.8 48.4 73.0 41.0 63.4 75.3

105.6 70.4 101.3 108.7 142.0 64.7 101.0 84.9 1394

Motion Purchases Sitting Sitting Down Taking Photo Waiting ‘Walking Dog ‘Walking Together Average

millisecond 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1

000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms

Res-Sup. 119.4 176.9 166.2 185.2 197.1 223.6 107.0 162.4 126.7 1532 173.6 202.3 94.5 110.5 129.2 165.0
Traj-GCN 102.0 143.5 78.3 119.7 100.0 150.2 77.4 119.8 79.4 108.1 111.9 148.9 55.0 65.6 81.6 114.3
DMGNN 104.9 146.1 75.5 115.4 118.0 174.1 78.4 123.7 85.5 113.7 183.2 210.2 70.5 86.9 93.6 127.6
MSRGCN 101.6 139.2 78.2 120.0 102.8 155.5 71.9 121.9 76.3 106.3 111.9 148.2 529 65.9 81.1 114.2
PGBIG 95.3 133.3 74.4 116.1 96.7 147.8 74.3 118.6 72.2 103.4 104.7 139.8 51.9 64.3 76.9 110.3
SPGSN 96.5 133.9 75.0 116.2 98.9 149.9 75.6 118.2 73.5 103.6 102.4 138.0 49.8 60.9 77.4 109.6
EqMotion(Ours) | 93.5 134.5 74.7 116.6 98.1 149.9 76.7 122.0 71.4 104.6 104.8 141.2 4.5 56.0 73.4 106.9

F. Limitation and Future Work

This work focuses on a generally applicable motion pre-
diction method. In the future, we plan to expand the method
by adding specific designs for different tasks to further im-
prove the model performance. We also expect the method
can use more types of data to assist prediction, such as im-
ages and videos that contain map information.
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