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B. Experimental setup
B.1. Dataset details

In our experiments, we utilize the following datasets. We
report the licenses for all datasets that publicly list them.

• CelebAMask-HQ [29]. License: non-commercial re-
search and educational purposes.

• Car-Parts [36].

• DeepFashion-MultiModal [20, 33]. License: non-
commercial research purposes.

• SHHQ [14]. License: CC0 and free for research use.

• Cityscapes [12]. License: on-commercial research and
educational purposes.

We also utilize pre-trained StyleGAN2 and ReStyle models.
In the face and car domain, these models were trained on the
following datasets:

• FHHQ [24]. License: Creative Commons BY-NC-SA
4.0 license by NVIDIA Corporation.

• LSUN [44].

• Stanford Cars [27]. License: non-commercial research
and educational purposes.

To make the DeepFashion-MultiModal segmentation masks
compatible with StyleGAN-Human, we first used the seg-
mentation mask to determine the background for each im-
age and set the background to white. We then re-sized each
image to the same size SHHQ images.

B.2. Segmentation mask class collapse
Consistent with prior works [47], we collapse the origi-

nal labels in each dataset into a smaller number of labeled
parts. For CelebAMask-HQ dataset, we remove any distinc-
tion between left/right in a number of parts (e.g., ears, eyes,
eyebrows). Furthermore, we form one mouth part consist-
ing of upper/lower lips and mouth. Finally, we collapse all
accessories and clothing into background. See Tab. 3a for
exact class collapse mapping. In long-tail experiments, we
un-collapse the relevant long-tail classes (glasses and hats)
and consider them separate classes.

For the Car-Parts dataset, we remove any distinction
between left/right and front/back for parts such as doors,

lights, bumpers, and mirrors. We also merge trunks and
tailgates to be the same class. See Tab. 3b for exact class
collapse mapping.

For DeepFashion-MultiModal, we consider two degrees
of class collapse. In the first, we consider the follow-
ing ten classes, with original classes included in paren-
theses: tops (tops and ties), outerwear, dresses (dresses,
skirts, rompers), bottoms (pants, leggings, belts), face (face,
glasses, earrings), skin (skin, neckwear, rings, wrist acces-
sories, gloves, necklaces), footwear (shoes and socks), bags,
and hair (hair and headwear). In the second, we further col-
lapse the classes by including outerwear in tops and bags as
background. See Tab. 3c and 3d for exact class collapse
mappings.

For Cityscapes, we utilize the eight groups listed on the
Cityscapes official website as our classes, with slight modi-
fications. We consider parts labeled sidewalk, parking, and
rail track as a part of the void class. See Tab. 3e for exact
class collapse mapping.

B.3. Training setup
All experiments were run on V100 GPUs using Ama-

zon Web Services (AWS) P3dn.24xlarge instances. Each
MLP in the label generator ensemble was trained with the
same parameters for all domains and tasks. Each MLP was
trained for ⇠ 4 epochs via the Adam optimizer [26] with
learning rate 0.001 and batch size 64. For all results pre-
sented in Tab. 1 and 2, the labeled images used to train the
label generator were chosen at random. For long-tail ex-
periments (Sec. 4.5), images with the long-tail part were
identified. Then, the labeled training images were selected
at random from the identified images.

Prior to training the downstream network, we filter out
the top 10% most uncertain synthetically generated images,
except for the long-tail experiments. This is to ensure that
images with long-tail parts, which are more likely to be “un-
certain”, are included in the training set for the downstream
network. To train the downstream network, we again uti-
lize the Adam optimizer [26] with learning rate 0.001 and
batch size 64. We train ReStyle [4] on the set of labeled
training images randomly selected from SHHQ [17,33] and
Cityscapes [12] for the full-body human poses and urban
driving scene domains, respectively. We use default settings
found in the ReStyle repository.

B.4. GAN inversion setup
For the full-body human poses and urban driving scenes

domains, we train ReStyle with the candidate training ex-
amples. Our framework only uses GAN inversion to obtain
latent codes for training the label generator. Training on the
candidate training examples thus ensures that ReStyle op-
timally reconstructs these latent codes. For faces and cars,
this procedure is not necessary because ReStyle optimally



Collapsed
label (8) CelebAMask-HQ original labels

Background Background (0), hat (14), earring (15),
necklace (16), neck (17), clothes (18)

Skin Skin (1)
Nose Nose (2)
Eyes Left eye (3), right eye (4), glasses (5)
Eyebrows Left eyebrow (6), right eyebrow (7)
Ears Left ear (8), right ear (9)
Mouth Mouth (10), upper lip (11), lower lip (12)
Hair Hair (13)

(a)

Collapsed
label (10) Car-Parts original labels

Background Background(0)
Bumper Back bumper (1), front bumper (7)
Back window Back glass (3)

Doors Back left door (3), back right door (5),
front left door (9), front right door (11)

Lights Back left light (4), back right light (6),
front left light (10), front right light (12)

Windshield Front glass (8)
Hood Hood (13)
Mirror Left mirror (14), right mirror (15)
Trunk Tailgate (16), trunk (17)
Wheel Wheel (18)

(b)

Collapsed
label (10) DeepFashion-MM original labels

Background Background(0)
Top Top (1), tie (23)
Outerwear Outerwear (2)
Dress Skirt (3), dress (4), romper (21)
Bottoms Pants (5), leggings (6), belt (10)
Face Glasses (8), face (14), earring (22)

Skin
Neckwear (9), skin (15), ring (16),
Wrist accessories (17), gloves (19),
necklace (20)

Footwear Footwear (11), socks (18)
Bags Bags (12)
Hair Headwear (7), hair (13)

(c)

Collapsed
label (8) DeepFashion-MM original labels

Background Background(0), bags(12)
Top Top (1), tie (23), outerwear (2)
Dress Skirt (3), dress (4), romper (21)
Bottoms Pants (5), leggings (6), belt (10)
Face Glasses (8), face (14), earring (22)

Skin
Neckwear (9), skin (15), ring (16),
Wrist accessories (17), gloves (19),
necklace (20)

Footwear Footwear (11), socks (18)
Hair Headwear (7), hair (13)

(d)

Collapsed label (8) Cityscapes (Fine annotations) original labels

Void Unlabeled (0), ego vehicle (1), rectification border (2), out of ROI (3), static (4), dynamic (5),
ground (6), sidewalk (8), parking (9), rail track (10)

Road Road (7)
Construction Building (11), wall (12), fence (13), guard rail (14), bridge (15), tunnel (16)
Object pole (17), polegroup (18), traffic light (19), traffic sign (20)
Nature Vegetation (21), terrain (22)
Sky Sky (23)
Human Person (24), rider (25)

Vehicle UCar (26), truck (27), bus (28), caravan (29), trailer (30), train (31), motorcycle (32),
bicycle (33), license plate (-1)

(e)

Table 3. Mapping from collapsed class label to original class label in faces (a), cars (b), full-body human poses (c), (d), and urban driving
scenes (e) domains. Original class numbers provided for each original class label name in parentheses.



reconstructs the latent codes of training examples without
training. For the optimization-based finetuning, we utilize
creg = 0.5 and �`2 = 0.1 for all domains. We run 300
optimization steps for the car domain, 500 iterations for the
face and urban driving scenes domains, and 2,000 iterations
for the human full-body poses domain. See Appendix C for
ablations on GAN inversion optimization steps.

B.5. Label generator architecture
For all experiments, we utilize an ensemble of two layer

MLPs with ReLU activations and batch normalizations for
our label generator. We sweep the combination of layer
widths and report the performance associated with the best
performing combination for each domain and number of la-
beled training images. See Appendix C for ablations on
layer widths. Below, we report the combination of label
generator sizes that produced the best performance. (x, y)
indicates that a network with first hidden layer of width x

and second hidden layer of width y was used.

Faces For segmentation, we utilize layer sizes of (256, 32)
for 50 training images and (512, 64) for 16 training images.
For keypoints, we utilize (512, 32) for PCK-0.1, PCK-0.05,
and PCK-0.02 with 50 training images. For 16 training im-
ages, we utilize (512, 64) for PCK-0.1 and (512, 32) for
PCK-0.05 and PCK-0.02.

Cars For segmentation, we utilize (512, 256) for both 50
training images and 16 training images.

Full-body human poses For segmentation, we utilize
(1024, 32) and (2048, 64) for 50 training images in the 8
class and 10 class settings and (2048, 64) and (2048, 128)
for 16 training images in the 8 class and 10 class settings.
For keypoints, we utilize (512, 128), (256, 128), and (128,
64) for PCK-0.1, PCK-0.05, and PCK-0.02 with 50 training
images. For 16 training images, we utilize (512, 256) for all
three PCK thresholds.

Urban driving scenes For segmentation, we utilize (512,
64) for both 50 and 16 training images. For depth maps, we
utilize (512, 256) for both 50 and 16 training images.

B.6. Keypoint heatmap regression
For keypoint detection experiments, we utilize a heatmap

regression setup. Given an image (of size H ⇥ W ) and a
corresponding list of K keypoints, we form a corresponding
pixel-wise label for the image as follows. For each of the K
keypoints, we create a H ⇥ W sized heatmap. The values
of the heatmap are the values of the density of a standard
two-dimensional Gaussian centered at the location of the
keypoint with variance �. We further scale the values of the

heatmap by 10, so that the maximum value of the heatmap
is 10. We find through hyperamater tuning that � = 25
works well for full body while � = 5 works well for faces.
With faces, we use � = 5 for the original sized CelebA
images and then resize the mask to be of CelebAMask-HQ
resolution.

The label generator and downstream task are tasked with
predicting a vector of K values for each pixel. At test
time, after predicting K heatmaps corresponding to the K

keypoints, we take the location of the maximum element
of each heatmap as the location of the keypoint. When
computing the PCK metric, we only compute if a keypoint
was correctly detected for visible keypoints. Information
on if a particular keypoint is visible or not is provided in
DeepFashion-MM, but not for CelebA.

C. Ablation studies
In this section, we present ablation studies that shed in-

sights on various hyperparameters.

Hypercolumn dimension We experiment with keeping
only a subset of the channels from the style block interme-
diate outputs from the lower resolution layers. In the Style-
GAN2 generator, the first 10 style block outputs (which
range from 4⇥4 to 128⇥128 resolutions) each contain 512
channels, comprising 5120 of the 6080 total channels. We
quantify the effect of keeping zero or the first 64, 128, and
256 channels on the downstream task performance in the
face domain. As shown in Tab. 6a, in the face domain,
while utilizing only higher resolution layers degrades per-
formance considerably, we can remove 256 of the 512 chan-
nels for the first 10 style blocks with very minimal loss
in performance. This results in a hypercolumn dimension
3520, which is a 42% reduction compared to the original
dimension of 6080. In our experiments, we utilize the full
hypercolumn dimension, but note that due to memory con-
siderations, utilizing a subset of the dimensions is feasible
from a performance trade-off perspective.

Number of MLPs in label generator ensemble We ex-
periment with the number of MLPs in the ensemble. We
train 1, 3, 5, 7, and 10 MLPs to generate labels. As seen in
Fig. 6b, in the face domain, using only 1 network results in
a performance drop, but using anywhere from 3 to 7 MLPs
results in performance meeting or even exceeding the per-
formance of using all 10 MLPs. In our experiments, we
utilize 10 networks to provide for more robustness in more
difficult domains, such as full-body humans and urban driv-
ing scenes.

Size of MLPs in label generator ensemble We investi-
gate whether network layer widths impact downstream per-



formance. The original DatasetGAN framework utilizes 3-
layer MLPs with intermediate dimensions of 128 and 32.
We explore 7 additional combinations of layer widths: (256,
32), (256, 64), (256, 128), (512, 32), (512, 64), (512, 128),
and (512, 256). As seen in Fig. 5, in the face domain, for
the face domain, downstream performance does not neces-
sarily increase with increasing network widths, but remains
relatively stable.

Number of labeled training images We characterize the
effects of the number of labeled training images has on
downstream task performance in the car domain. As em-
phasized throughout the paper, a notable benefit HandsOff
has over comparable frameworks is the ability for practi-
tioners to increase the number of labeled training images
without incurring costs of manual annotations. As observed
in Fig. 6c, in the car domain, the downstream performance
generally increases as the number of training images is in-
creased, but this increase is not non-decreasing. One expla-
nation for why is that the composition of the training data
may have a larger impact on downstream performance than
simply the number of images. This fact is explored in the
long-tail experiments of the main paper. In our experiments,
we report the performance with 16 labeled training images,
which is the same number of training images in compara-
ble baselines. We also report the performance of 50 labeled
training images to highlight our framework’s ability to ac-
commodate more than a 3⇥ increase in training data.

Reconstruction quality We examine the effects of GAN
inversion reconstruction quality on downstream perfor-
mance. Specifically, we vary the number of optimiza-
tion refinement steps on the ReStyle-produced latent code.
To quantitatively assess reconstruction quality, we use the
value of the loss in the refinement step. As seen in Tab. 6, in
the car domain, as the number of optimization iterations in-
creases, the downstream performance generally increases.
However, this increase does not scale directly with recon-
struction loss.

Size of generated dataset We characterize the effects of
the size of the generated dataset on downstream perfor-
mance. For each generated dataset size, we filter out the
top 10% uncertain images. As seen in Fig. 6d, in the car do-
main, as the size of the dataset grows, the downstream per-
formance generally increases. However, the performance
improvement has diminishing returns, as performance im-
provement is most notable moving from 5,000 to 10,000
generated image-label pairs. As a result, in our experiments,
we utilize dataset sizes of 10,000 to strike a balance between
performance and time and computation needed to generate
larger datasets.

Percent of generated dataset filtered We experiment
with the percent of the dataset that is filtered out. To do so,
we generate a dataset of size 10, 000 and then filter out vary-
ing percentages. As seen in Fig. 6e, in the car domain, em-
ploying filtering results in relatively similar performances.
Therefore, in our experiments, we utilize a filtering percent-
age of 10% to strike a balance between removing highly un-
certain labels and the number of image-label pairs that are
used to train the downstream model.

Cityscapes downstream network finetuning. We report
the effects of finetuning the trained downstream model with
the original 16 or 50 labeled images used to train the label
generator. As seen in Tab. 7, finetuning results in increases
in performance, indicating that finetuning overcomes the
difficulty in producing high quality in-distribution images
with a GAN.

Transfer learning pretrain dataset choice. We report
the performance of the transfer learning baseline in the face
and car domain when pretrained on ImageNet versus pre-
trained on ImageNet and COCO. As seen in Tab. 8, pre-
training on COCO in addition to ImageNet results in mild
performance gains.

D. Additional results
D.1. Reconstructed image alignment

An underlying assumption of the HandsOff framework
is that the reconstructed images resulting from GAN inver-
sion align well semantically with the original labels. In this
section, we present visual examples of reconstructed image
alignment with original labels.

In the face domain, we utilize ReStyle for the en-
coder initialization and use 500 steps of optimization to
refine the images. As seen in Fig. 7a, the reconstructions
align very well with the semantic segmentation masks from
CelebAMask-HQ.

In the car domain, we utilize ReStyle for the encoder ini-
tialization and use 300 steps of optimization to refine the
images. As seen in Fig. 7b, the output of the ReStyle cap-
tures the overall scene very well, but struggles in preserving
fine details, as shown in red circles. By utilizing the opti-
mization based refinement step, we are able to correct for
these small details. These refined images align much better
with the original segmentation masks, as shown in Fig 7b.

D.2. Face domain few-shot segmentation results
In this section, we compare the downstream few-

shot segmentation performance of HandsOff against self-
supervised approaches and diffusion-model based ap-
proaches. Namely, we compare against DDPM-Segment
[6], DatasetDDPM [6], MAE [19], and SwAV [9].



DatasetDDPM and DDPM-Segment both utilize denois-
ing diffusion probabilistic models (DDPMs). DDPM-
Segment extracts intermediate network outputs from vari-
ous time steps of the denoising process to form pixel-level
image representations, akin to the hypercolumn represen-
tations formed from StyleGAN2 in HandsOff. Then, an
ensemble of linear classifiers is trained to output a pixel-
level label. DDPM-Segment is different from HandsOff in
that it does not generate synthetic datasets. Instead, at in-
ference time, the ensemble of linear classifiers is applied to
the pixel-level representation of an image. DatasetDDPM
simply replaces the GAN in DatasetGAN with a DDPM,
forming pixel-level representations in the same manner as
DDPM-Segment. For MAE and SwAV, we utilize the ap-
proach of [6] and extract intermediate layer outputs to form
image representations of real images. We then train a seg-
menter to map from these representations to label outputs.

# labeled
images

CelebAMask-HQ
8 classes

DDPM-Segment 16 0.772
DatasetDDPM 20 0.739
MAE 16 0.772
SwAV 16 0.725
HandsOff 16 0.781

# labeled
images

CelebAMask-HQ
19 classes

DDPM-Segment 20 0.599
MAE 20 0.578
SwAV 20 0.524
HandsOff 20 0.583

Table 4. Segmentation task performance in face domain, reported
in mIOU ("). Top half: experiments performed on our splits with 8
classes. Bottom half: experiments performed on [6] splits with 19
classes. Results for DDPM-Segment, MAE, and SwAV are those
as reported in Table 2 in [6].

In Tab. 4, we report the performance on our train/test
splits with 8 classes and the train/test splits found in [6]
with 19 classes. With our splits and 8 segmentation classes,
HandsOff outperforms all baselines, including diffusion
model-based approaches DDPM-Segment and DatasetD-
DPM. This is likely due to two reasons: 1. DDPM-Segment
does not leverage the inherent ability of generative mod-
els to produce more samples whereas HandsOff produces a
large dataset on which the downstream segmenter is trained.
The volume of downstream training data compensates for
the advantage that diffusion models have over GANs. 2.
Unlike DatasetDDPM, HandsOff trains on annotations of
real images and avoids hand annotating synthetic images,
which as found by [6], when used in training, generally re-

sult in poorer performance. With the train/test splits found
in [6] and 19 classes, DDPM-Segment performs slightly
worse than DDPM-Segment, but outperforms the strongest
self-supervised baselines (MAE [19] and SwAV [9]), as re-
ported in [6]. We utilize the implementation of [6] to train
DDPM-Segment end-to-end on our train/test splits. Fur-
thermore, we utilize the publicly released synthetically gen-
erated datasets from DatasetDDPM to train a downstream
network and evaluate on our train/test splits, as the labeled
DDPM-generated images used to train DatasetDDPM were
not publicly available.

D.3. Additional examples of generated labels
In this section, we present additional visual examples of

generated images and their labels as well as examples of
segmentation mask improvements in the long-tail segmen-
tation setting.

1. In Fig. 8, we present examples in the face domain. We
include examples of the predicted aggregated keypoint
heatmaps used to generate the predicted keypoints. To
produce the aggregated heatmap, we sum across all of
the individual keypoint heatmaps.

2. In Fig. 9, we present examples in the car domain.

3. In Fig. 10, we present examples in the full-body hu-
man pose domain. We again include examples of ag-
gregated predicted heatmaps used to generate the pre-
dicted keypoints. To produce the aggregated heatmap,
we sum across all of the individual keypoint heatmaps.

4. In Fig. 11, we present examples in the urban driving
scene domain.

D.4. Additional examples of long-tail visualizations
In Fig. 12a and 12b, we present examples of long-tail

segmentation mask progressions and pixel-wise uncertainty
measurements with glasses and hats, respectively. Un-
certainty is measured by Jensen-Shannon divergence (See
Sec. 3.3).



(a) Ablation for hypercolumn dimension in
the face domain.

(b) Ablation for ensemble size in the face
domain.

(c) Ablation for number of labeled training
images in the car domain.

(d) Ablation for the size of generated
dataset in the car domain.

(e) Ablation for the percent of generated
dataset that is filtered in the car domain.

MLP layer widths (128, 32) (256, 32) (256, 64) (256, 128) (512, 32) (512, 64) (512, 128) (512, 256)
mIOU 0.7740 0.7859 0.7813 0.7807 0.7828 0.7818 0.7817 0.7850

Table 5. Ablation for MLP hidden layer widths in the face domain

Optimization loss 3.333 2.292 2.185 2.140 2.108 2.089
Optimization iterations 0 100 200 300 400 500
mIOU 0.5735 0.6278 0.6301 0.6679 0.6426 0.6591

Table 6. Ablation for GAN inversion quality in the car domain.

# labeled images No finetuning Finetuning
16 0.5206 0.5510
50 0.5492 0.6047

Table 7. Ablation for Cityscapes downstream network finetuning.

Domain # labeled images ImageNet pretrain COCO + ImageNet pretrain
Faces 16 0.4575 0.4896
Faces 50 0.6197 0.6295
Cars 16 0.3232 0.3313
Cars 50 0.4802 0.5026

Table 8. Ablation for choice of pretraining dataset for transfer learning baseline.



(a)

(b)

Figure 7. (a) Alignment of reconstructed images with original segmentation masks in the face domain. Semantic features align almost
perfectly with segmentation masks. (b) Visualization of fine detail improvement after optimization refinement in car domain. Areas of vast
improvement circled in red.



Figure 8. Examples of HandsOff generated labels (segmentation masks, keypoint heatmaps, and keypoints) in the face domain. Last row
of examples represent typical failure cases. Hats, a rare class, are occasionally mis-classified as hair or clothing. Additionally, when the
image includes GAN generated artifacts, segmentation mask quality is typically lower, while keypoint locations remain accurate.



Figure 9. Examples of HandsOff generated segmentation masks in the car domain. Last row of examples represent typical failure cases.
Similar classes, such as back trunk and front hood or front glass and back glass are confounded. Additionally, segmentation performance
is typically lower when GAN generated images are out of domain or incoherent.



Figure 10. Examples of HandsOff generated labels (segmentation masks, keypoint heatmaps, and keypoints) in the full-body human poses
domain. Last row of examples represent typical failure cases. Similar classes, tops, outerwear, and dresses are confounded. Furthermore,
patterned pieces of clothing seem to result in mixed segmentation performance. Keypoint locations remain accurate even when segmenta-
tion masks are of lower quality.



Figure 11. Examples of HandsOff generated labels (segmentation masks and depth maps) in the urban driving scenes domain. Last row
of examples represent typical failure cases. Visually small objects such as light poles and street signs are often confounded as background
classes or not labeled. In cases of background buildings with many vertical lines, such lines can be mistaken as street sign poles (last image
in last row). Depth maps remain relatively accurate even when segmentation masks are of lower quality.



(a)

(b)

Figure 12. Visualization of generated segmentation mask and pixel-wise label generator uncertainty. (a) Not only do we see qualitative
improvement in the generated label for glasses, we also see that the classifier is less uncertain when generating the correct label. (b) Hats
are a particularly challenging class to characterize, so while the quality of the masks improves drastically, the classifier uncertainty remains
relatively high. The last row of examples shows typical failure cases, where the hat is classified as semantically similar classes, such as
hair or clothing.
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