
JacobiNeRF: NeRF Shaping with Mutual Information Gradients
(Appendix)

1. Mutual information approximated by Jaco-
bian under scene perturbations

As defined in Sec. 3, pi and pj are different pixels with
values I(pi) and I(pj), respectively, and they may or may
not come from the same image (view). Generally speaking,
pi and pj can also be the radiance value of 3D points. With-
out loss of generality, we derive with (gray-scale) 2D pixels
in the following, and they can be expressed as:

I(pi) = Φ(oi,vi; θ)

I(pj) = Φ(oj ,vj ; θ)

Further, we denote θD as the set of parameters that will
be perturbed by a random noise n ∈ RD sampled from a
uniform distribution on the sphere SD−1. Please see Fig. 2
in the main text for different selection patterns of θD. The
random variables representing the perturbed pixel values are
then:

Î(pi) = Φ(oi,vi; θ
D + n)

Î(pj) = Φ(oj ,vj ; θ
D + n)

where we omit the parameters remain unchanged for clarity.
Now we characterize the mutual information between

Î(pi) and Î(pj) under the perturbation-induced joint proba-
bility distribution P(Î(pi), Î(pj)). However, as mentioned,
calculating the joint distribution under a push-forward of
the MLP is complicated due to non-linearities. Thus, we
proceed by constraining the magnitude of the perturbations,
namely, multiplying the random noise n by σ ≪ 1.0.
Again, this constraint improves compliance with the fact
that a small perturbation in the physical scene is enough
to reveal mutual information between scene entities. More-
over, it guarantees that the perturbed representation still rep-
resents a legitimate scene. With this constraint, we can ex-
plicitly write the random variables under consideration as:

Î(pi) = I(pi) + σn · ∂Φ(oi,vi; θ)

∂θD

Î(pj) = I(pj) + σn · ∂Φ(oj ,vj ; θ)

∂θD

following the Taylor expansion. We denote the Jacobians as
∂Φi/∂θ

D or ∂Φi for easy notation. We can show that the

mutual information is:

I(Î(pi), Î(pj)) = H(Î(pj))−H(Î(pj) | Î(pi))
= H(σn · ∂Φj)−H(σn · ∂Φj | σn · ∂Φi)

leveraging the fact that entropy is translation-invariant.
From the above equation, we can see that the mutual

information between the two perturbed pixels can be ap-
proximated by the mutual information between two random
projections, e.g., σn · ∂Φj and σn · ∂Φi. To further ease
annotation, we let A = ∂Φi and B = ∂Φj . And,

I(Î(pi), Î(pj)) = H(σn ·B)−H(σn ·B | σn ·A)

To proceed, we write the Jacobians and the random
(small) perturbation in the spherical form:

A = σA


1
0
...
0

 ,B = σB



cosαB
1

sinαB
1 cosαB

2

sinαB
1 sinαB

2 cosαB
3

...
sinαB

1 ... sinα
B
D−2 cosα

B
D−1

sinαB
1 ... sinα

B
D−2 sinα

B
D−1


,

σn = σ



cosα1

sinα1 cosα2

sinα1 sinα2 cosα3

...
sinα1... sinαD−2 cosαD−1

sinα1... sinαD−2 sinαD−1


(1)

Here we set (by rotation) the direction of A to be the
unit vector in the first dimension. Thus, the cosine similar-
ity between B and A is now the cosine value of the first
angle (αB

1 ) of B in the spherical form (similarly for the
noise vector n). Note that the above parameterization does
not change the entropy or conditional entropy since σn is
uniformly distributed in each direction. Also, note that the
scaling of a distribution shifts its entropy by a logarithm of
the scaling factor. Thus, the first term is a constant given
symmetry (randomness is in {αk}k=1...D−1), i.e.,

H(σn ·B) = Hproj(SD−1) + log(σBσ) (2)

Next, we calculate H(σn · B|σn · A). First, let’s check
H(σn ·B|σn ·A = y), i.e., the entropy of σn ·B when the



project of σn on A is y. We have y = σAσ cosα1, and

σn ·B = σB cosαB
1 σ cosα1 + σB sinαB

1 σ sinα1· cosαB
2

...
sinαB

2 ... sinα
B
D−1


T  cosα2

...
sinα2... sinαD−1


= y cosαB

1

σB

σA
+ σB sinαB

1 σ

√
1− (

y

σAσ
)2· cosαB

2
...

sinαB
2 ... sinα

B
D−1


T  cosα2

...
sinα2... sinαD−1

 (3)

Thus, we have:

H(σn ·B|σn ·A = y) = Hproj(SD−2)+

log(σB sinαB
1 σ

√
1− (

y

σAσ
)2) (4)

Suppose that the probability density function of y is fY ,
then we have:

H(σn ·B|σn ·A) =

∫
fY (y)H(σn ·B|σn ·A = y)dy

=

∫
fY (y)Hproj(SD−2)dy+∫

fY (y) log(σB sinαB
1 σ

√
1− (

y

σAσ
)2)dy

= Hproj(SD−2) + log(σB sinαB
1 σ)+∫ σAσ

−σAσ

fY (y)

√
1− (

y

σAσ
)2dy

= log(σB sinαB
1 σ)+Hproj(SD−2)+

∫ π

0

fα1
(α) sin(α)dα

(5)

Combining Eq. (2) and Eq. (5), and denote the last term
in Eq. (5) as h(fα1) (constant) with fα1 the probability den-
sity function of α1, then we have:

I(Î(pi), Î(pj)) = Hproj(SD−1) + log(σBσ)−
log(σB sinαB

1 σ)−Hproj(SD−2)− h(fα1)

= log(
1

sinαB
1

) +Hproj(SD−1)−Hproj(SD−2)− h(fα1)

= log(
1√

1− cos2 αB
1

)+Hproj(SD−1)−Hproj(SD−2)−h(fα1)

(∝ ∥ cosαB
1 ∥) (6)

According to Eq. (6), we can see that the mutual informa-
tion between the two pixels pi,pj under the perturbation-
induced joint distribution is positively correlated to the ab-
solute value of the cosine similarity of their gradients with
respect to the perturbed network weights.

Figure 1. The NeRF architecture and the network parameters have
been shaped. γ denotes positional encoding, x denotes 3D spa-
tial coordinate, d represents 2D unit direction, and σ represents
point density. The proposed mutual information shaping (MI-
shaping) in our current implementation is applied on the 3× 128-
dimensional parameters of NeRF’s RGB linear layer, shown as the
orange layer in the figure.

2. Implementation details
2.1. Training details

The MI-shaping process follows Sec. 3.3 in the main
text, where we first train the NeRF with only images, and
then shape it via the proposed contrastive loss on the gra-
dients. The gradients we use to shape NeRF are computed
with the gray values of pixels (mean value of the 3 RGB
channels), with respect to the 3 × 128-dimensional param-
eters of NeRF’s RGB linear layer, as shown in Fig. 1.

For each epoch, we randomly sample a batch of 64 rays
across all the training views. For each sampled ray, we se-
lect from the other rays whose corresponding DINO feature
similarity with the sampled ray is higher than a threshold
as the positive sample, and the others with lower similar-
ity as negative samples (the total number of samples in the
contrastive loss of a certain ray is also 64). The threshold
for each scene is adaptively adjusted during the training pro-
cess. We first set an interval [0.5, 0.8] for the threshold, then
for each step, we subtract 0.001 from the threshold if the
ratio of positive samples is lower than 5%, and add 0.001
to the threshold if the ratio is larger than 15%, unless the
threshold exceeds the interval. The loss is shown in Eq. (8),
where λ = 0.01, γ = 0.01, optimized by the Adam [1] op-
timizer, with an initial learning rate of 5 × 10−4 for 10000
epochs.

The training runs for 24 hrs with color reconstruction and
then 8 hrs with the shaping loss activated (mem: 1350 MB).
Semantic-NeRF [4] and DINO-NeRF [2] take 28 hrs.

2.2. Label propagation with JacobiNeRF in 3D

Here we elaborate on the implementation details of the
label propagation method denoted as J-NeRF 3D in the
main text. The only difference between J-NeRF 3D and
J-NeRF 2D is that we collect the perturbation responses of
sampled points in 3D instead of 2D pixel difference, and
then volume render them into segmentation logits for pixels.



To render a 2D segmentation label, we first sample points
along the rays following the hierarchical sampling strategy
of NeRF [3]. Then we render the points’ unperturbed ra-
diance values and K (K is the number of classes) times the
perturbed values, thus obtaining K-dimensional differences
for each point. We integrate the differences of the sampled
points along each ray following the volume render process
in Eq. (1) to get a K dimensional segmentation logits in 2D
pixel space.

2.3. Label propagation under dense setting

2.3.1 Adaptive gradient sampling

For efficiency, we have to choose representative gradients
for each class to perform perturbation rather than perturb-
ing along all the given labels’ gradients. To avoid loss of la-
bel information, we employ an adaptive gradient sampling
strategy to make the gradients as sufficient as possible to
reconstruct the given dense label.

For the first round, we randomly select 20 combinations
of labeled pixels, each combination containing K pixels (K
is the number of classes). We perturb along these gradients
and get the response of the source view (whose dense la-
bel is known), thereby getting label prediction of the source
view from the Argmax of the response. We evaluate the
quality of the predicted label by calculating gain (mIoU)
with the given dense label and choose the combination of
gradients that yields the largest gain. For the next itera-
tion, we sample another 20 combinations of gradients, and
choose the one with the largest gain. We discard these gra-
dients if the gain from these 20 combinations is not larger
than zero. We repeat the above process until we get 5 quali-
fied selections, i.e., each selection gives us K labels, in total
5×K labels. Fig. 2 shows how we adaptively sample rep-
resentative gradients. As the iteration of adaptive sampling
goes on, the selected gradients can better reconstruct the
given dense label, indicating that the gradients encode more
and more information about the dense label.

2.3.2 Aggregation MLP

We leverage a lightweight aggregation/denoising MLP to
further denoise the perturbed response with information
from the dense label. The aggregation MLP maps from each
pixel’s K-dimensional (K is the number of classes) pertur-
bation responses to K-dimensional segmentation logits. Af-
ter we adaptively select the gradients and get the responses
on the source view by perturbing along the selected gra-
dients, we train the aggregation MLP from scratch under
aggregation loss Lagg:

Lagg = −
∑
r∈R

K∑
k=1

pk(r) log pkagg(r), (7)

where R are the rays within the source view, pk is the
probability at class k of the ground-truth label, and pkagg
is the probability at class k predicted by the aggregation
MLP from the perturbed response. Lagg is a multi-class
cross-entropy loss to encourage the denoised predicted la-
bel to be consistent with the given ground-truth dense la-
bels. The MLP has 3 linear layers and ReLU activation,
with K × 256 + 256 × 128 + 128 × K parameters. The
MLP is optimized with the Adam [1] optimizer with an ini-
tial learning rate of 1 × 10−3. We train it for 200000 itera-
tions, approximately 30 minutes. On the right of Tab. 2, we
show the quantitative effect of the lightweight aggregation
MLP (Please note that J-NeRF+ represents the propagation
with the denoising MLP.). Fig. 2 shows the denoising effect
qualitatively.

3. Additional results

3.1. Novel view synthesis quality

We also report the novel view synthesis quality of the
plain NeRF and the proposed JacobiNeRF in Tab. 1. As
confirmed, the MI-shaping process does not degrade the
performance of view synthesis, i.e., the image quality is
similar to the one without shaping.

Method NeRF J-NeRF
PSNR ↑ 18.88 18.79

Table 1. The performance of novel view synthesis on the Replica
dataset measured by the peak signal-to-noise ratio (PSNR).

3.2. Propagation capability of plain NeRF

To further validate the effectiveness of our NeRF shaping
method, we replace JacobiNeRF with plain NeRF (w/o MI-
shaping) in our propagation pipeline and propagate in 2D
by perturbing along the gradients of labeled pixels. The se-
mantic segmentation propagation results, in the sparse set-
ting, averaged over the 7 scenes from Replica are shown in
Tab. 2 (left). As observed, J-NeRF 2D significantly outper-
forms plain NeRF, proving that our method shapes NeRF
effectively to make it more suitable for information propa-
gation.

Method NeRF J-NeRF

mIoU↑ 0.067 0.263
Avg Acc↑ 0.182 0.489
Total Acc↑ 0.199 0.483

Method J-NeRF J-NeRF+

mIoU↑ 0.411 0.524
Avg Acc↑ 0.724 0.689
Total Acc↑ 0.633 0.864

Table 2. Effectiveness of the proposed shaping on a plain NeRF
(left), and of the lightweight perturbation response decoder (right).



Figure 2. The effect of adaptive gradient sampling and aggregation MLP. Top: as more and more qualified gradients are selected, the
reconstruction quality of the dense input label also gets better. Bottom: the denoising MLP can make better decode the perturbation
responses.

Figure 3. Distribution of selected regularization points.

3.3. Learnable “argmax” for dense label propaga-
tion

We study the effectiveness of the denoising MLP used
in the dense setting by comparing to those labels from the
Argmax of the perturbation response. Results averaged over
7 scenes are shown in Tab. 2 (right), indicating that the
lightweight MLP improves the utilization of the dense la-
bels.

3.4. Distribution of selected regularization points

Points sampled during the contrastive training (MI-
shaping) process are uniformly random as in Fig. 3.

3.5. Fewer regularization samples.

In Fig. 4, we observe that when the selected samples are
constrained to one view, the clustering effect reduces com-
pared to all-view regularization.

4. Additional Visualization
Please see Fig. 5, 6, 7 for more qualitative label propa-

gation results.

Figure 4. Qualitative comparison: one-view v. all-view regular-
ization.

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2, 3

[2] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann.
Decomposing nerf for editing via feature field distillation.
In Advances in Neural Information Processing Systems, vol-
ume 35, 2022. 2

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Communications of the ACM, 65(1):99–106, 2021. 3

[4] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J Davison. In-place scene labelling and understand-
ing with implicit scene representation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 15838–15847, 2021. 2



Figure 5. Qualitative results of semantic segmentation propagation under the sparse setting. Examples are from the Replica dataset.

Figure 6. Qualitative results of semantic segmentation propagation under the dense setting. Examples are from the Replica dataset.



Figure 7. Qualitative results of instance segmentation propagation under both sparse and dense settings. Examples are from the ScanNet
dataset.


	. Mutual information approximated by Jacobian under scene perturbations
	. Implementation details
	. Training details
	. Label propagation with JacobiNeRF in 3D
	. Label propagation under dense setting
	Adaptive gradient sampling
	Aggregation MLP


	. Additional results
	. Novel view synthesis quality
	. Propagation capability of plain NeRF
	. Learnable ``argmax'' for dense label propagation
	. Distribution of selected regularization points
	. Fewer regularization samples.

	. Additional Visualization

