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A. Missing Proofs and Derivations
A.1. Proof to Theorem 1

Theorem 1. Logit Bias of Balanced CE. Let πyi
= nyi

/N be the training label yi distribution. If we implement the balanced
cross-entropy loss via logit adjustment, the bias item of logit zyi will be Bce

yi
= log πyi , i.e.,

LBal-CE = log[1 +
∑

yj ̸=yi

e(zyj
+log πyj

)−(zyi
+log πyi

)].

Proof.

Following the notions in Section Preliminaries, we simplify a modelMθ with parameters θ, which attempts to learn the
joint probability distribution of images and labels P(X ,Y). Due to its agnostic, one may try to get the maximum posterior
P(Y|X ) as an approximation solution from the Bayesian estimation view. To this end, if we Maximize A Posterior (MAP)
to optimize θ, we have:

θ̂ = argmax
θ
P(Y|X ) = argmax

θ

P(X|Y) · P(Y)
P(X )

= argmax
θ
P(X|Y) · P(Y),

where P(X|Y) is the likelihood function, P(Y) is the prior distribution of Y , and P(X ) is the evidence factor, which is θ
irrelevant. Then, if we reasonably view P(Y) as the class distribution (typically class label frequency πyi

as approximations),
the MAP is equivalent to maximizing the likelihood function P(X|Y; θ). Considering both training Ps(X ,Y) and test
datasets Pt(X ,Y), the MAP shall hold on to both of them, i.e.,θ̂ = argmax

θ
Ps(Y|X ) = argmax

θ
Ps(X|Y; θ) · Ps(Y)

θ̂ = argmax
θ
Pt(Y|X ) = argmax

θ
Pt(X|Y; θ) · Pt(Y)

With model parameters θ learned on the training set Ps(X ,Y), the likelihood function will be consistent. To obtain the
maximization posterior on the test dataset (the best accuracy performance), we can derive that:

Pt(Y|X ; θ) ∝ Pt(X|Y; θ)Pt(Y) ∝ Ps(Y|X ; θ)
Ps(Y)

· Pt(Y)

Since MAP is equivalent to maximizing the likelihood functionP(X|Y; θ), we further decouple the test MAP as regulation
terms to achieve the Structural Risk Minimization:

argmax
θ
Pt(Y|X ; θ) = argmax

θ
logPt(Y|X ; θ) = argmax

θ
logPs(X|Y; θ)− logPs(Y) + logPt(Y)

Notice that Ps(Y) and Pt(Y) are both θ irrelevant according to our previous hypothesis. Hence, we can compensate the
regulation terms− logPs(Y)+logPt(Y) during the training procession as + log πs(y)− log πt(y). In addition, if we adopt
the Softmax for probability normalization, we will have:

Ps(xi|yi; θ) =
ezyi∑

yj∈C e
zyj

=⇒ logPs(xi|yi; θ) = log
ezyi∑

yj∈C e
zyj

∝ log ezyi = zyi

Thus, the logPs(X|Y; θ) is equivalent to the output logits z := M(x|θ) and we immediately deduce that the training
regulation shall be zy + log πs

y − log πt
y. For the balanced test datasets, − log πt

y = logC and can be ignored for all classes.
Hence, we derive the final bias as:

Bce
yi

= log πs
yi



A.2. Proof to Theorem 2&3

Theorem 2&3. Logit Bias of Balanced BCE with Test Prior. Let πs
yi

and πt
yi

be the label yi training and test distribution. If
we implement the balanced cross-entropy loss via logit adjustment, the bias item of logit zyi will be:

Bbce
yi

= (log πs
yi
− log πt

yi
)− (log(1− πs

yi
)− log(1− πt

yi
))

Proof.

In this paper, we propose the balanced binary cross entropy loss in Thm. 2 and further extend it with the test prior (test
label distribution) in Thm. 3. As we discussed, the bias in Thm. 2 is derived from re-balancing with training instance numbers
like [51] do. Here, we give another proof from the Bayesian estimation view like Thm. 1. We mainly give the proof to the
Thm. 3 and derive the Thm. 2 as a special case of Thm. 3. Following the notions in the proof to Thm. 1, BCE loss treats
the long-tailed recognition task as C independent binary classification problems. For every single problem, the derivation in
Thm. 1 still holds if Y := {0, 1}:

argmax
θ
Pt(Y|X ; θ) = argmax

θ
logPt(Y|X ; θ) = argmax

θ
logPs(X|Y; θ)− logPs(Y) + logPt(Y)

If we adopt the Sigmoid for probability normalization, we will have:

Ps(xi|yi; θ) =
1

1 + e−zyi
=⇒ ezyi

ezyi + e0

Similar to the Softmax, for the binary classification, we consider the ezyi/(ezyi + e0) as the likelihood for Y = 1 and
e0/(ezyi + e0) for Y = 0. Then, we can derive that:

logPs(xi|yi; θ) = log
ezyi

ezyi + e0
∝ log ezyi = zyi

Different from CE, which just punishes the positive term, BCE shall take the negative terms into consideration as well. If
we take the statistical label frequency πs

y and πt
y as the prior, we can deduce that the bias should be:{

log πs
y − log πt

y for positive item zyi

log(1− πs
y)− log(1− πt

y) for negative item 0

Hence, for a single binary classification, the unbiased Sigmoid operation is required to compensate for each term:

σ(zyi) =
ezyi

ezyi + e0
=⇒ ezyi

+log πs
yi

−log πt
yi

ezyi
+log πs

yi
−log πt

yi + e0+log(1−πs
yi

)−log(1−πt
yi

)

To match the Logit Adjustment requirement [47], we convert all bias to the logit zyi :

σ(zyi
) =

ezyi

ezyi + e0
=⇒ ezyi

+log πs
yi

−log πt
yi

−(log(1−πs
yi

)−log(1−πt
yi

))

ezyi
+log πs

yi
−log πt

yi
−(log(1−πs

yi
)−log(1−πt

yi
)) + e0

=
1

1 + e−[zyi
+(log πs

yi
−log πt

yi
)−(log(1−πs

yi
)−log(1−πt

yi
))]

Hence, we get the final bias with train and test label prior knowledge:

Bbce
yi

= (log πs
yi
− log πt

yi
)− (log(1− πs

yi
)− log(1− πt

yi
))

For the balanced test dataset, πt
yi

= 1/C and the Bbce
yi

will be the form in Thm. 2 if we ignore constant terms.

Bbce
yi

= (log πs
yi
− log

1

C
)− (log(1− πs

yi
)− log(1− 1

C
)) = log πs

yi
− log(1− πs

yi
) + log(C − 1)



A.3. Fisher Consistency with Test Prior

Menon et al. show how to verify whether a pair-wise loss ensures Fisher consistency for the balanced error (see the
Theorem 1 in [47]). Here, we extend it to test the prior available situations.

L(yi,M(x)) = αyi · log[1 +
∑

yj ̸=yi

Exp(∆yiyj
) · Exp(Myj

(x)−Myi
(x))]

Theorem 4. For any δs, δt ∈ RC
+, the pairwise loss is Fisher consistent with weights and margins:

αyi
=

δsyi
· πt

yi

δtyi
· πs

yi

∆yiyj
= log

(
δsyj
· δtyi

δtyj
· δsyi

)

With δsyi
= πs

yi
and δtyi

= πt
yi

, we deduce that Bal-BCE is Fisher consistent between train (s) and test (t) set.

Proof.

Let ∆yiyj
= log

(
δsyj

·δtyi

δtyj
·δsyi

)
and αyi

= 1, we have:

L(yi,M(x)) = − log
ezyi

+log δsyi
−log δtyi∑

yj∈Y e
zyj

+log δsyj
−log δtyj

If ηyi(x) represents the posterior possibility Ps(yi|x), the Bayes-optimal score will satisfy:

z∗yi
+ log δsyi

− log δtyi
= log ηyi

(x) =⇒ z∗yi
= log

(
ηyi

(x)

δsyi

· δtyi

)
Now consider adding weights αyi

to the loss term, the corresponding risk shall be:

Ex,y

[
Lαyi

]
=

∑
yi∈Y

πs
yi
· Ex|y=yi

[
Lαyi

]
=

∑
yi∈Y

πs
yi
· αyi · Ex|y=yi

[L] ∝
∑
yi∈Y

π̄s
yi
· Ex|y=yi

[L]

where π̄s
yi
∝ πs

yi
· αyi

. Hence training with the weighted loss amounts to training with the original loss on the new label
distribution π̄. The posterior probability η̄yi

(x) on the altered label distribution is:

η̄yi
(x) = P (yi|x) ∝ P (x|yi) · π̄s

yi
∝ ηyi

(x) ·
π̄s
yi

πs
yi

∝ ηyi
(x) · αyi

When we set αyi
=

δsyi
·πt

yi

δtyi
·πs

yi

, the Bayes-optimal score will satisfy:

arg max
yi∈Y

z∗yi
= arg max

yi∈Y
log

(
η̄yi

(x)

δsyi

· δtyi

)
= arg max

yi∈Y
log

(
ηyi

(x) · αyi

δsyi

· δtyi

)
= arg max

yi∈Y
log

(
ηyi

(x)

πs
yi

· πt
yi

)



B. Analysis to Proposed Bias

Figure 4. Bce
yi

and Bbce
yi

w.r.t. πyi (C=1,000).

For Bal-CE, Ren et al. [51] propose the balanced softmax as a
strong baseline for long-tailed recognition while Menon et al [47]
deploy it by adding extra logit margins. The following works [22,70]
further extend it with test prior knowledge, which can be written as:

Bce
yi

= log πs
yi

+ logC

To improve the performance of balanced binary cross-entropy loss
in long-tailed recognition, we propose an unbiased version of Sigmoid
to eliminate the inherent bias to the head class. Inspired by Logit
Adjustment [47], we implement it as a bias Bbce

yi
to the model logits

and extend to test prior as well, which can be written as:

Bbce
yi

= log πs
yi
− log(1− πs

yi
) + log(C − 1)

Fig. 4 shows the difference between Bce
yi

and Bbce
yi

. Notice that Bbce
yi

is closed to Bce
yi

when πyi is small, which indicates that
both Bce

yi
and Bbce

yi
help the models to pay more attention to learn the tail. However, Bbce

yi
gives larger biases to the head and

makes the inter-class distance of the head smaller. Such a modification allows Bal-BCE to show more tolerance to the head
compared to Bal-CE. To be more specific, CE utilizes Softmax to emphasize mutual exclusion, where large head bias will
damage corresponding performance severely. In contrast, BCE calculates independent class-wise probability with Sigmoid
function, where the original task is considered as a series of binary classification tasks. Hence, the head bias will not influence
the tail. In addition, larger biases will not hurt the head as CE does because it hedges the over-suppression for negative labels.
CE can not benefit from it because of its mutual exclusion.

∂LBal-CE
(
zyj

,1(yj)
)

∂
(
zyj

) =
e
zyj

+Bce
yj∑

yi∈C e
zyi

+Bce
yi

,
∂LBal-BCE

(
zyj

,1(yj)
)

∂
(
zyj

) =
e
zyj

+Bbce
yj

1 + e
zyj

+Bbce
yj

, 1(yj) = 0

∂LBal-CE
(
zyj

,1(yj)
)

∂
(
zyj

) =
e
zyj

+Bce
yj∑

yi∈C e
zyi

+Bce
yi

,
∂LBal-BCE

(
zyj

,1(yj)
)

∂
(
zyj

) = − 1

1 + e
zyj

+Bbce
yj

, 1(yj) = 1

From the optimization view, as the above equation shows, we can also observe that Bbce
yi

will not affect class yj’s gradients.
However, for Bal-CE, the optimization step would be rather small once the logit for the positive class is much higher than
those of the negative ones. With the dominance of head labels, larger head biases will make the networks fall into even
worse situations. In contrast, for the Bal-BCE, the above larger head biases will act as a regularization to overcome the
over-suppression while avoiding damage to the head classes themselves.

In addition, Bbce
yi

will be more important when the datasets become more skewed. As Fig. 5 shows, the difference will be
larger when the imbalance factor γ increases. It means the performance will get worse if we adopt Bce

yi
for BCE loss. Notice

that the gap between Bce
yi

and Bbce
yi

has consistent diminution when the class number C is getting bigger. However, Bbce
yi

still
bring obvious performance gain in this circumstance.
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Figure 5. Visualization of the bias in CIFAR10-LT dataset. A larger γ indicates a severer imbalance situation. ∆ is the difference between
the two biases, which is shown in right y-axis. With γ increases, the ∆ becomes more important to the final bias.



C. Datasets
We conduct experiments on CIFAR-LT [32], ImageNet-LT [52], iNat18 [57], and Places-LT [82]. With different imbal-

anced factors γ, we build the long-tailed version of CIFAR by discarding training instances following the rule given in [13]
and keeping the original validation set for all datasets. To investigate the MGP performance on LT data, we build a balanced
ImageNet-1K subset called ImageNet-BAL. It contains the same training instance number as ImageNet-LT while keeping
class labels balanced. Notice that both LT and BAL adopt the same validation set. We demonstrate MGP is robust enough
for long-tailed data via quantitative and qualitative experiments on the BAL and LT. iNat18 is the largest benchmark of the
long tail community. Our LiVT ameliorates vanilla ViTs most significantly because of the data scale and fine-grained prob-
lems. Places-LT is created from large-scale dataset Places [82] by [44]. The train set contains just 62K images with a high
imbalance factor, which makes it challenging for data-hungry Transformers.

Table 8. Detailed information of datasets motioned in the main paper.

Dataset
CIFAR-10-LT CIFAR-100-LT

ImageNet-LT ImageNet-BAL iNat18 PlaceLTImbalance Factor (γ)

100 10 100 10

Training Images 12,406 20,431 10,847 19,573 115,846 160,000 437,513 62,500
Classes Number 10 10 100 100 1,000 1,000 8,142 365

Max Images 5,000 5,000 500 500 1,280 160 1,000 4,980
Min Images 50 500 5 50 5 160 2 5

Imbalance Factor 100 10 100 10 256 1 500 996

D. Implementation Details
D.1. Augmentations in Algorithm.1

In Alg. 1, LiVT adopts different augmentations in two stages, i.e., Apt & Aft. The reason is from our observations that
the strong data augmentations in MGP will not contribute to higher performance while bringing extra calculation burden.
Some augmentations like Color Jitter may lead to wired reconstruction results w.r.t. the augmented images. For the BFT
stage, we adopt more general data augmentations for stable training procession. The AutoAug improves performance on
ImageNet-LT/BAL remarkably and slightly in iNat18 / Places-LT, which is consistent with the observation in [12]. Mixup
and Cutmix make the training more smooth, and RandomErease regulates the model with better performance.

Table 9. The detailed augmentations adopted in Alg. 1.

Augmentation Masked Generative Pretraining (Apt) Balanced Fine Tuning (Aft)

RandomResizedCrop ✓ ✓
RandomHorizontalFlip ✓ ✓

AutoAug × (9,0.5)
Mixup × 0.8
Cutmix × 1.0

RandomErease × 0.25
Normalize ✓ ✓

D.2. Configure Settings for Table 1

In Tab. 1, we implement different ViT training recipes on long-tailed and balanced ImageNet-1K subsets. Specially, we
reproduce vanilla ViTs according to Tab.11 in [18], DeiT III according to Tab.1 in [55], and MAE according to Tab.9 in [18].
All recipes train ViTs with more epochs (800) compared to ResNets (typically 90 or 180). However, the performance is far
from catching up with ResNet baselines and severely deteriorate when it becomes imbalanced because the dataset is relatively
small for data-hungry ViTs compared to ImageNet-1K or ImageNet22K and the long-tailed labels bias the ViTs heavily.



D.3. Configure Settings for the Main Comparisons

We conduct experiments on ImageNet-LT, iNat18, and Places-LT. For fair comparisons, we train all models from scratch
following previous LTR work. To balance the performance and computation complexity trade-off, we adopt a small image
size for the large-scale dataset and adopt 800 epochs for MGP. Thanks to the masked tokens, MGP trains ViTs much faster
than vanilla ViT and DeiT. We transfer the hyper-parameters of ImageNet-LT to other benchmarks and just finetune the τ of
Bal-BCE loss slightly. Notice that Places-LT is a small dataset and we just finetune 30 epochs to avoid over-fitting.

Table 10. The LiVT configurations on three main benchmarks. We mainly transfer the hyper-parameters of ImageNet-LT to other bench-
marks without wide changes. Tuning hyper-parameters will bring further improvement.

Configuration ImageNet-LT iNaturalist 2018 Places-LT
Masked Generative Pretraining.

Epoch 800 800 800
Warmup Epoch 40 40 40

Effective Batch Size 4096 4096 4096
Optimizer AdamW(0.9,0.95) AdamW(0.9,0.95) AdamW(0.9,0.95)

Learning Rate 1.5e-4 1.5e-4 1.5e-4
LR schedule cosine(min=0) cosine(min=0) cosine(min=0)

Weight Decay 5e-2 5e-2 5e-2
Mask Ratio 0.75 0.75 0.75
Input Size 224 128 224

Balanced Fine Tuning.
Epoch 100 100 30

Warmup Epoch 10 10 5
Effective Batch Size 1024 1024 1024

Optimizer AdamW(0.9,0.99) AdamW(0.9,0.99) AdamW(0.9,0.99)
Learning Rate 1e-3 1e-3 1e-3
LR schedule cosine(min=1e-6) cosine(min=1e-6) cosine(min=1e-6)

Weight Decay 5e-2 5e-2 5e-2
Layer Decay 0.75 0.75 0.75

Input Size 224 224 224
Drop Path 0.1 0.2 0.1

τ of Bal-BCE 1 1 1.05

E. Additional Experiments

E.1. DeiT with Bal-BCE

In the DeiT III [55], Touvron et al. propose to train ViTs with binary cross entropy loss. With our proposed bias Bbce, we
can further boost its recipe when collaborating with long-tailed distributed data. As Tab. 11 shows, Bal-BCE rebalances the
performance of ViT-Small over three groups and improves the overall accuracy significantly. It is worth noticing that the few-
shot gets ameliorated remarkably, while the many-shot is sacrificed to some extent. Compared to the results in Tab.6, we get
a meticulous observation that Bal-BCE improves all groups’ performance when adopting MGP as the pretrain manner, and
even the many-shot (head) classes get compelling growth, especially on the small models. The aforementioned phenomenon
may indicate that the MGP learns more generalized and unbiased features compared to supervised manners, which helps Bbce

to calibrate more misclassification cases instead of the over-confident but right cases.
Table 11. Ablation study of proposed bias on DeiT III. Experiments are conducted with ViT-Small on ImageNet-LT for 400 epochs.

Loss Type Many ∆ Med. ∆ Few ∆ Acc ∆

BCE w/o Bbce 64.2 - 32.2 - 9.0 - 41.4 -
BCE w/ Bbce 60.3 -4.0 40.8 +8.7 23.8 +14.7 46.0 +4.6



E.2. Performance with higher resolution

With the FixRes effect [56], LiVT can reach further performance gains with minor computational overhead, which only
increases the resolution in the 2nd stage with a few epochs. As a comparison, ResNet-based methods require extra effort to
modify the network with heavy computational overhead. Hence, we only provide LiVT∗ in Tab. 2-4. Note that LiVT with
224 resolution already achieves SOTA performance (except tiny Places-LT). We additionally show ViT-based methods with
384 resolution in Tab. 12. ViT-based methods typically show lower performance than ResNet-based ones due to ViTs’ data
hungry in the tiny dataset (Tab. 4). Noteworthy, our Bal-BCE loss remarkably improves performance (Acc +10.5% & Few
+18.8% compared to MAE). While tuning hyper-parameters (e.g., τ in Alg. 1 or parameters in Tab. 9&10) can further boost
the performance (Fig. 3), we keep consistent settings with Tab. 2&3 to report the LiVT performance in Tab. 4.

Table 12. Top-1 Accuracy of ViT-B-16 pretrained on iNat18 dataset. We fine-tune models for 100 epochs with 384 resolution.

Resolution ViT DeiT MAE LiVT

224 × 224 54.6 61.0 69.4 76.1
384 × 384 56.3 +1.7 63.7 +2.7 72.9 +3.5 81.0 +4.9

E.3. Negative-Tolerant Regularization

Recently, there are some other works to improve the performance of BCE loss. For instance, Wu et al. [66] propose to
leave more Negative Tolerant Regularization (NTR) in the BCE loss. In long-tailed recognition, the tail class samples are
usually learned as negative pairs resulting from the head class dominance. Here, for clear and concise expression, we call the
logit zyi

positive logit and zyj
, (j ̸= i) negative logits for the label yi. For Softmax operation, the gradient of the negative

logits will be relatively small due to its mutual exclusion when the positive logit is large. However, Sigmoid acts differently
from Softmax. The Sigmoid always maintains relatively large gradients for negative logits despite the positive logit value.
This property of BCE leads to the output tail class logits being smaller, which incurs that the model only overfits a few
tail-positive samples in the training set.

To overcome this problem, Wu et al. propose the NT-BCE loss to alleviate the dominance of negative labels. With a
hyper-parameter λ to control the strength of negative tolerance regularization, the NT-BCE can be written as:

LNT-BCE = −
∑
yi∈C

[1(yi) · log
1

1 + e−zyi
+

1

λ
(1− 1(yi)) · log(1−

1

1 + e−λzyi

)]

To collaborate with it, we add our proposed bias Bbce
yi

= log πyi
− log(1− πyi

)) to the above loss and derive that:

L∗
NT-BCE = −

∑
yi∈C

[1(yi) · log
1

1 + e−(zyi
+Bbce

yi
)
+

1

λ
(1− 1(yi)) · log(1−

1

1 + e−λ(zyi
+Bbce

yi
)
)]

For more in-depth observations, we train ViT-B on CIFAT-100-LT with bothLNT-BCE andL∗
NT-BCE and show the experiment

results in Fig. 6. The NTR ameliorates the vanilla BCE loss with large λ by benefiting medium and tail classes. However, the
performance of LNT-BCE is hard to catch up with L∗

NT-BCE. What’s worse, the NTR consistently deteriorates the performance
of L∗

NT-BCE when λ gets larger. The best is achieved at λ = 1, which indicates that NTR can not work well with our bias.
To explain it, we revisit the purpose of NTR, which aims to reduce the gradient of tail negative logits. While optimizing

the tail class as negative logits, if the logit is small, the corresponding gradient will also be small to keep the logit from
over-minimization. However, it is contradictory to our proposed bias. Typically, the margin-based loss makes the network
pay attention to certain categories by increasing the corresponding difficulty with larger margins. As the margins for all
classes, our bias Bbce makes the tail (head) class harder (easier) to learn, where the initial head logits are larger than tail ones,
as shown in Fig.5. With NTR, tail classes will converge more slowly because larger λ tends to slow down the optimization of
tail logits, which finally results in unsatisfying tail performance. Although We et al., add a similar bias in [66], they ignore
its effect because of the little difference between the training and test label distribution of their datasets. More explorations
are still required to make NTR and Bbce complement each other in long-tailed recognition.
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(a) LT-10 with LNT-BCE
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(b) LT-100 with LNT-BCE
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(c) LT-10 with L∗
NT-BCE
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(d) LT-100 with L∗
NT-BCE

Figure 6. Performance of BCE loss with NTR and Bbce on CIFAR100-LT. The total accuracy (red) is shown in right y-axis for better
visualizations. (a)(b) NTR boosts vanilla BCE loss by benefiting medium and tail classes. (c)(d) NTR fails to collaborate with our bias.

F. More Discussions
F.1. About the two-stage pipeline.

Although one stage is a promising direction, the two-stage frameworks (e.g., c-RT [29], MiSLAS [80], and our LiVT)
typically achieve much better performance. For ViTs in LTR tasks, the difficulty is to learn the inductive bias and label
statistical bias simultaneously. We manage the challenge by decoupling the two biases and learning the inductive bias in the
MGP stage and the statistical bias in the BFT stage separately.

F.2. Test prior to model performance.

The Bal-CE implementation in previous work [51] contains the test prior (i.e., πt
i = 1/C) by default. With balanced test

data, it is equal to eliminate the test prior bias item − log πt
i = logC with Softmax operation (Eq. 2). However, for Bal-BCE,

the test prior term cannot be reduced in Sigmoid operation. As we discussed in Thm. 3, although ignoring this term does not
influence the optimization direction, it will reduce the loss value, especially when C is large (c.f. derivation in Supp. A.2).
Therefore, the test prior is essential to ensure stability during training in Bal-BCE (e.g., models trained in the iNat18 dataset
cannot converge without this item).

F.3. About the baseline performance.

One may consider overfitting as a possible reason for the poor performance of the ViT baseline. Hence, we visualize the
training log in Fig. 7. Either in the tiny Places-LT or the large-scale iNat18 (similar scale to ImageNet-1K), ViTs exhibit
biased performance (Tab. 2-4). The unsatisfactory performance of ViT-based baselines (direct supervision) mainly accounts
for the long-tailed problems rather than the overfitting issues (Tab. 1). Even under the same setting with these baselines,
Bal-BCE improves MAE (Tab. 2-4) and DeiT (Supp. E.1) consistently in few and overall performance.

Figure 7. The training log of ViT-B on ImageNet-LT. Left y-axis: validation accuracy. Right y-axis: training loss value. The validation
accuracy is consistent with training loss, which means that overfitting does not occur during the training process.



G. Visualization of MGP Reconstruction

Raw Masked BAL-Base-400 LT-Base-400 LT-Large-1600

Figure 8. MGP Reconstruction comparisons. Raw: input images. Masked: we fix all masks for intuitive comparisons. BAL-Base-400:
ViT-Base-16 trained on ImageNet-BAL for 400 epochs. LT-Base-400: ViT-Base-16 trained on ImageNet-LT for 400 epochs. LT-Large-
1600: ViT-Large-16 trained on ImageNet-LT for 1600 epochs. With the same training instance number and implementation settings, the
ViT-B models trained with both LT and BAL datasets show comparable reconstruction ability. With the ImageNet-LT data, we can further
get better reconstruction results with a bigger model and longer MGP epochs, as the column LT-Large-1600 shows.


