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A. Implementation details

Classification training and dense localization inference.
For the training of the proposed multi-modal token trans-
former, publicly available pre-trained weights1 were used
to initialize the ViT-base backbone. The decay parameter
of the Global Weighted Ranking Pooling (GWRP) was set
to 0.996, as suggested in [6]. We selected the model with
the best classification performance on the validation set for
the dense localization inference. The dense localization in-
ference process is illustrated in Figure 1. For the genera-
tion of the transformer attention-driven localization maps,
we fused the class-to-patch attention maps from the last
six transformer encoding layers. The patch-level pairwise
affinity maps were generated by fusing the patch-to-patch
attention maps from all twelve transformer encoding lay-
ers. Following the prior works [5,9,13,14], we reported the
best evaluation results of the dense object localization maps
when applying multiple background thresholds.
Segmentation training and inference. As in previous
works [4, 7, 11, 12, 14], we used ResNet38-based Deeplab-
V1 as the semantic segmentation network. We first trained
the ResNet38-based classification network for 15 epochs
using the image-level labels of the target segmentation
dataset, following the same settings as [2]. We then used
the classification weights to initialize the segmentation net-
work. During training, we first randomly scaled the images
within the range of (0.7,1.3) and randomly applied horizon-
tal flipping on the scaled images. Moreover, we randomly
cropped the processed images to be of size 321 × 321. The
initial learning rate was set as 7 × 10−4. A polynomial
learning rate decay with a power of 0.9 was used. With the
stochastic gradient descent (SGD) optimizer, we trained the
segmentation model for 30 epochs with a batch size of 4.
For inference, we used multi-scale inputs of scales 0.75, 1.0
and 1.5. Results were max-pooled and post-processed by
the CRF with the default hyper-parameters suggested in [3].
The same settings were used on both PASCAL VOC 2012
and MS COCO 2014.

B. Additional quantitative results

Following prior works [4, 5, 8–10], we used IRN [1]
to post-process our generated class-specific dense localiza-
tion maps (seeds), generating the pseudo masks (masks) for
WSSS. Table 1 shows the evaluation results of the seeds and

1https : / / dl . fbaipublicfiles . com / dino / dino _
vitbase16_pretrain/dino_vitbase16_pretrain.pth

Table 1. Evaluation of the generated multi-label dense localiza-
tion maps (seed) and their post-processed masks using IRN [1] for
WSSS in terms of mIoU (%) on the PASCAL VOC 2012 train set.

Method Cls. backbone Seed Mask

IRN (CVPR19) [1] ResNet50 48.8 66.3
CONTA (NeurIPS20) [15] ResNet50 48.8 67.9
RIB (NeurIPS21) [8] ResNet50 56.5 70.6
AdvCAM (CVPR21) [9] ResNet38 55.6 69.9
CDA (ICCV21) [11] ResNet38 50.8 67.7
Du et al. (CVPR22) [5] ResNet38 61.5 70.1
W-OoD (CVPR22) [10] ResNet50 59.1 72.1

Ours ViT-base 66.3 73.7

masks generated by the state-of-the-art methods. The pro-
posed method is seen to achieve the best mIoUs in terms of
both seeds and pseudo masks. Table 2 and Table 3 present
the detailed segmentation results of per class IoUs on PAS-
CAL VOC 2012 and MS COCO 2014, respectively.

C. Additional qualitative results

Qualitative dense object localization results. Figure 3 and
Figure 4 present the object localization heatmaps (where the
colors from red to blue indicate the activation scores from
high to low) generated by the proposed method on the multi-
label PASCAL VOC 2012 and MS COCO 2014 train sets,
respectively. Compared to the results by the state-of-the-
art method, i.e., MCTformer [14], the proposed method is
shown to produce more complete object localization maps,
even for the challenging cases, such as the multiple TV
monitors in a complex background in the last row of Fig-
ure 3 and the person in a far corner of the scene in the last
row of Figure 4. Figure 5 presents the object localization
heatmaps generated by the proposed method on the single-
label OpenImages test set. Table 5 shows that the pro-
posed method produces accurate dense object localization
maps with clear boundaries, where the object regions are
generally activated with high scores. These results demon-
strate the effectiveness of the proposed method in perform-
ing dense object localization on both multi-label and single-
label images.
Qualitative segmentation results. Figure 6 and Figure 7
present additional qualitative segmentation results on the
PASCAL VOC 2012 and MS COCO 2014 val sets, respec-
tively. Using the pseudo labels generated by the proposed
method, the trained segmentation models are seen to per-
form well on both PASCAL VOC and MS COCO in vari-
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Figure 1. Class-specific dense localization inference of the proposed method.

Table 2. Segmentation performance comparison with the state-of-the-art WSSS methods using only image-level labels in terms of per-class
segmentation IoUs (%) on PASCAL VOC 2012. ∗ denotes without post-processing (i.e., multi-scale testing and CRF).

bkg plane bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIoU

Results on the val set:
AdvCAM [9] 90.0 79.8 34.1 82.6 63.3 70.5 89.4 76.0 87.3 31.4 81.3 33.1 82.5 80.8 74.0 72.9 50.3 82.3 42.2 74.1 52.9 68.1
Zhang et al. [16] 89.9 75.1 32.9 87.8 60.9 69.5 87.7 79.5 89.0 28.0 80.9 34.8 83.4 79.7 74.7 66.9 56.5 82.7 44.9 73.1 45.7 67.8
MCTformer [14] 91.9 78.3 39.5 89.9 55.9 76.7 81.8 79.0 90.7 32.6 87.1 57.2 87.0 84.6 77.4 79.2 55.1 89.2 47.2 70.4 58.8 71.9
W-OoD [10] 91.0 80.1 34.1 88.1 64.8 68.3 87.4 84.4 89.8 30.1 87.8 34.7 87.5 85.9 79.8 75.0 56.4 84.5 47.8 80.4 46.4 70.7

Ours∗ 91.0 78.5 38.2 85.3 58.8 73.3 84.7 80.5 85.4 26.4 79.8 56.0 79.3 77.6 73.7 78.5 47.8 82.6 44.0 68.4 56.8 68.9
Ours 92.4 84.7 42.2 85.5 64.1 77.4 86.6 82.2 88.7 32.7 83.8 59.0 82.4 80.9 76.1 81.4 48.0 88.2 46.4 70.2 62.5 72.2

Results on the test set:
AdvCAM [9] 90.1 81.2 33.6 80.4 52.4 66.6 87.1 80.5 87.2 28.9 80.1 38.5 84.0 83.0 79.5 71.9 47.5 80.8 59.1 65.4 49.7 68.0
Zhang et al. [16] 90.4 79.8 32.9 85.8 52.9 66.4 87.2 81.4 87.6 28.2 79.7 50.2 82.9 80.4 78.9 70.6 51.2 83.4 55.4 68.5 44.6 68.5
MCTformer [14] 92.3 84.4 37.2 82.8 60.0 72.8 78.0 79.0 89.4 31.7 84.5 59.1 85.3 83.8 79.2 81.0 53.9 85.3 60.5 65.7 57.7 71.6
W-OoD [10] 90.9 83.1 35.6 89.0 61.5 63.0 86.2 80.8 89.9 29.6 79.6 40.1 82.1 81.0 82.6 74.0 60.1 85.3 58.0 71.9 47.0 70.1

Ours∗ 91.2 82.8 36.6 81.5 54.6 70.2 81.6 79.2 83.9 31.2 78.0 57.8 80.8 81.6 77.6 78.4 50.4 80.9 57.3 58.5 58.7 69.2
Ours 92.6 87.9 40.4 86.2 56.7 75.3 82.5 81.1 85.9 33.8 82.4 57.8 84.6 83.1 80.0 81.1 52.8 86.2 61.5 61.1 63.8 72.2
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Figure 2. Failure cases. (a) Input. (b) The generated dense local-
ization maps for the class “TV monitor”. (c) The corresponding
pseudo labels. (d) Ground-truth semantic segmentation labels.

ous challenging indoor and outdoor scenarios, such as small
objects and complex backgrounds. This demonstrates the
effectiveness and the good generalization ability of the pro-
posed method in WSSS.
Limitation discussion. Our method has a limitation in ac-
curately distinguishing between the target objects and some
background objects that have very similar visual features.
For example, as shown in Figure 2, the generated dense lo-
calization maps for the class “TV monitor” mistakenly in-
clude the regions of the laptop given that they are similar in
shape and both have screens.



Table 3. Segmentation performance comparison with the state-of-the-art WSSS methods in terms of per class IoU(%) on the MS COCO
2014 val set. ∗ denotes without post-processing.

Class MCTformer [14] Our∗ Ours Class MCTformer [14] Our∗ Ours

background 82.4 84.2 85.3 wine class 27.0 35.3 33.8
person 62.6 71.2 72.9 cup 29.0 33.6 35.8
bicycle 47.4 50.8 49.8 fork 13.9 18.7 20.0
car 47.2 47.0 43.8 knife 12.0 10.8 12.6
motorcycle 63.7 65.1 66.2 spoon 6.6 6.7 6.7
airplane 64.7 64.4 69.2 bowl 22.4 24.0 23.7
bus 64.5 67.0 69.1 banana 63.2 61.4 64.4
train 64.5 62.3 63.7 apple 44.4 45.4 50.8
truck 44.8 40.3 43.4 sandwich 39.7 44.3 47.0
boat 42.3 41.1 42.3 orange 63.0 60.6 64.6
traffic light 49.9 48.8 49.3 broccoli 51.2 50.5 50.6
fire hydrant 73.2 72.1 74.9 carrot 40.0 34.1 38.6
stop sign 76.6 72.6 77.3 hot dog 53.0 51.0 54.0
parking meter 64.4 62.9 67.0 pizza 62.2 63.3 64.1
bench 32.8 35.2 34.1 donut 55.7 55.4 59.7
bird 62.6 62.1 63.1 cake 47.9 47.1 50.6
cat 78.2 74.3 76.2 chair 22.8 24.5 24.5
dog 68.2 67.3 70.6 couch 35.0 37.7 40.0
horse 65.8 64.7 67.1 potted plant 13.5 16.8 13.0
sheep 70.1 68.0 70.8 bed 48.6 51.5 53.7
cow 68.3 67.0 71.2 dining table 12.9 24.7 19.2
elephant 81.6 79.9 82.2 toilet 63.1 64.6 66.6
bear 80.1 76.2 79.6 tv 47.9 47.6 50.8
zebra 83.0 82.0 82.8 laptop 49.5 52.8 55.4
giraffe 76.9 76.4 76.7 mouse 13.4 11.8 14.4
backpack 14.6 16.7 17.5 remote 41.9 40.7 47.1
umbrella 61.7 60.6 66.9 keyboard 49.8 53.3 57.2
handbag 4.5 8.1 5.8 cellphone 54.1 50.8 54.9
tie 25.2 29.3 31.4 microwave 38.0 42.7 46.1
suitcase 46.8 47.4 51.4 oven 29.9 35.4 35.3
frisbee 43.8 46.1 54.1 toaster 0.0 4.3 2.0
skis 12.8 11.6 13.0 sink 28.0 29.3 36.1
snowboard 31.4 26.6 30.3 refrigerator 40.1 50.2 52.7
sports ball 9.2 32.3 36.1 book 32.2 31.2 34.8
kite 26.3 36.2 47.5 clock 43.2 46.3 51.5
baseball bat 0.9 7.2 7.0 vase 22.6 24.4 25.8
baseball globe 0.7 8.5 10.4 scissors 32.9 29.9 30.7
skateboard 7.8 11.7 15.2 teddy bear 61.9 60.0 61.4
surfboard 46.5 45.2 51.5 hair drier 0.0 1.8 1.3
tennis racket 1.4 21.2 26.4 toothbrush 12.2 16.9 19.0
bottle 31.1 36.1 37.1 mIoU 42.0 43.7 45.9



Figure 3. Visualization of the object localization heatmaps on the PASCAL VOC 2012 train set. (a) Input. (b) Results of MCTformer [14].
(c) Our results. (d) Ground-truth. (Only the localization heatmaps of the dominant class in each image are presented.)



Figure 4. Visualization of the object localization heatmaps on the MS COCO 2014 train set. (a) Input. (b) Results of MCTformer [14]. (c)
Our results. (d) Ground-truth. (Only the localization heatmaps of the dominant class in each image are presented.)



Figure 5. Visualization of the object localization heatmaps on the single-label OpenImages test set. (a) Input. (b) Ground-truth. (c) Our
results.
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Figure 6. Visualization of the semantic segmentation results on the PASCAL VOC 2012 val set. (a) Input. (b) Ground-truth. (c) Our
results.
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Figure 7. Visualization of the semantic segmentation results on the MS COCO 2014 val set. (a) Input. (b) Ground-truth. (c) Our results.
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