
Supplementary Material:
Learning Open-vocabulary Semantic Segmentation Models

From Natural Language Supervision

Here, we start by providing additional experimental results in Sec. 1 and give more visualization results in Sec. 2.

1. Additional Experiments
1.1. Details on the Entity Set

The constructed entity set contains 100 frequently appeared entities, including: people, man, men, woman, women, girl,
boy, lady, kid, child, children, baby, student, bride, groom, couple, prince, princess, car, bus, truck, motorcycle, train, bicycle,
boat, aeroplane, airplane, motorbike, bike, cup, bottle, bowl, knife, spoon, glass, fork, chair, table, bench, clock, laptop, light,
vase, plant, remote, microwave, toaster, oven, mouse, keyboard, sofa, monitor, desk, tv, TV, couch, flower, refrigerator, house,
building, hotel, handbag, umbrella, book, backpack, phone, shirt, tie, suitcase, T-shirt, bag, box, sink, bed, toilet, cat, dog,
horse, bird, cow, sheep, elephant, bear, zebra, giraffe, ball, racket, skateboard, skis, snowboard, surfboard, kite, pizza, cake,
apple, banana, sandwich, orange, carrot, donut. Note that, we exclude the word “person” in the entity set as CC12M [2]
claimed that they performed person-name substitutions to protect the privacy of the individuals in the images, specifically, all
named entities of type Person (e.g., the name of the artist) detected by the natural language APIs are replaced with “person”.

1.2. Additional Ablation Studies

Effect of the Pre-trained Backbones. We show the effect of applying different unimodal/multimodal pre-trained weights for
visual and textual encoders in Table 1, with Lcontrast being adopted only. Training both encoders from scratch only achieves
28.8 mIoU on PASCAL VOC. Initialization from CLIP visual and text encoders (including the visual/textual projection
heads) brings significant improvement. However, it requires 400M image-text pairs for pre-training. Besides, a potential
drawback of applying CLIP pre-trained weights is that the model can easily learn the visual-text alignment while ignoring
the visual grouping. In comparison, initializing the model from single-modality sources, i.e. DINO and BERT, yields better
performance. This design choice requires no manual annotation as both DINO and BERT use self-supervised training.

Pre-training scheme PASCAL VOC PASCAL Context
Visual Enc. Text Enc.

% % 28.8 12.1
CLIP-V CLIP-T 38.4 15.3
DINO BERT 40.5 15.1

Table 1. Comparison of different unimodal/multimodal pre-training schemes for visual encoder and text encoder.

On the Choice of Mask Threshold. Here, we study the influence of different mask thresholds δ as mentioned in Sec.3.2 in
the manuscript. As observed in Table 2, our model reaches a decent mIoU of 53.6 on PASCAL VOC when δ is 0.6, while
smaller thresholds lead to false-positive pixels of the objects.
Effect of the Momentum Model. Our proposed OVSegmentor adopts a momentum model for encoding the cross-image,
which is updated by the exponential-moving-average (EMA) of the online model. Table 3 reveals that applying the momen-
tum model brings about 2% mIoU gain on PASCAL VOC and COCO Object. We attribute this to the improved quality of the
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δ 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mIoU 51.2 51.6 51.8 53.6 53.1 53.2 53.4

Table 2. Comparison of different mask thresholds δ on PASCAL VOC.

Method PASCAL VOC PASCAL Context COCO Object

w/o momentum 50.9 20.2 23.7
w/ momentum 53.8 20.4 25.1

Table 3. Effect of the momentum model in OVSegmentor.

Figure 1. Qualitative results of the masks and cross-image masks in our proposed cross-image mask consistency.

pseudo targets generated by the momentum model. In Fig. 1, we also show the object masks generated by our online model
M̂1, M̂2 and momentum model M1,M2 for both the input image I1 and the sampled cross-image I2 with the shared entity.
Mask Probing. Following DINO [1] and GroupViT [6], we evaluate the quality of the generated masks regardless of the
class predictions, termed as mask probing. Mask probing directly reflects the effect of the pixel-to-group assignment in
our proposed model. For ViT-based methods that adopt finetuning transfer, i.e., DeiT [5], MoCo [3] and DINO [1], the
self-attention maps in the last ViT block are probed.

Specifically, we denote the self-attention maps as S ∈ Rnh×(L+1)×(L+1), where nh refers to the number of heads and
L+1 is the token numbers (L image tokens and 1 class token), the self-attention masks M ∈ Rnh×1×L are derived by taking
the similarities of the class token and all image tokens. M is then binarized by keeping the highest values (e.g. 60%) as the
foreground and the remaining regions as the background. The Jaccard similarity is computed between the attention mask for
each head and the ground-truth mask, and the one with the highest similarity is taken as the mask probing result. For grouping-
based methods GroupViT [6] and our proposed OVSegmentor, the pixel-to-group affinity A ∈ RHW×K is considered as the
attention masks. We directly choose one of the K groups that has the highest Jaccard similarity to the ground-truth mask.
As demonstrated in Table 4, OVSegmentor surpasses methods using finetuning transfer. Despite comparable mask probing
performance to GroupViT, our proposed OVSegmentor still outperforms GroupViT in terms of open-vocabulary semantic
segmentation, indicating that OVSegmentor learns better group-text alignment with 85% less data (4M vs 27M) used during
pre-training.
Per-class Segmentation Performance. We compare the mIoU over total 20 object categories in PASCAL VOC, as shown
in Table 5. Our proposed OVSegmentor surpasses VIL-Seg [4] on all the categories, while significantly outperforming
GroupViT [6] on categories such as aeroplane, car, motorbike. OVSegmentor achieves inferior results on the “person” class,
owing to its large variation of visual appearance in web-collected images, posing additional challenges for our proposed
cross-image mask consistency to learn visual invariance.



Method Pretrain dataset Supervision Zero-shot transfer Mask probing Open-vocabulary segmentation

DeiT [5] ImageNet-1K class % 24.6 53.0
MoCo [3] ImageNet-1K self % 28.2 34.3
DINO [1] ImageNet-1K self % 45.9 39.1
DINO [1] CC12M+YFCC15M self % 41.8 37.6
GroupViT [6] CC12M+YFCC15M text " 51.8 51.2
GroupViT* [6] CC4M text " 45.2 25.8
OVSegmentor CC4M self+text " 50.9 53.8

Table 4. Comparison of mask probing results on PASCAL VOC. The results of DeiT, MoCo, DINO and GroupViT are reported in [6].

Method Pretrain aeroplane bicycle bird boat bottle bus car cat chair cow table dog horse motorbike person plant sheep sofa train monitor

VIL-Seg [4] 12M 40.2 21.6 41.0 17.3 35.3 52.8 10.1 59.3 15.4 42.4 21.4 49.5 56.1 49.4 11.3 21.6 41.5 18.6 54.1 13.4
GroupViT [6] 27M 38.3 31.4 50.6 31.9 63.2 78.8 65.1 79.2 18.1 74.0 30.9 76.2 59.3 55.0 44.1 40.9 66.6 31.5 49.6 29.8
OVSegmentor 4M 70.8 32.8 57.5 40.2 57.3 76.7 71.7 77.4 16.5 72.7 28.2 61.4 60.0 70.4 17.8 43.3 69.7 31.2 58.7 33.2

Table 5. Comparison of per-class mIoU results on PASCAL VOC.

1.3. Model efficiency

Table 6 shows the computation cost on a single A100 GPU, using ViT-S/16 with 224×224 input, and BERT-base text
encoder. Despite extra training cost, our model outperforms GroupViT while retaining lower inference cost as the decoder is
discarded after training.

Method Lcon Lcon+Lent Lcon+Lent+Lmask Inference mIoU

GroupViT* 145M / 0.51s - - 145M / 51 19.8
Ours 141M / 0.47s 148M / 0.65s 148M / 1.60s 141M / 59 44.5

Table 6. Training cost (#params / sec-per-iter), inference cost (#params / FPS) and performance (mIoU) on PASCAL VOC.

2. More Visualization Results
Additional qualitative results on PASCAL VOC, PASCAL Context, and COCO Object can be found in Fig. 2, Fig. 3,

and Fig. 4, respectively. Generally, our proposed OVSegmentor successfully groups semantically related pixels together and
aligns the group to the correct category. On PASCAL VOC, OVSegmentor successfully segments objects with various scales
(e.g. small aeroplanes and distant cars in the 2nd, 5th and 7th rows) and multiple objects of the same class (4th, 6th and 8th

rows). In terms of PASCAL Context where objects of more categories are annotated, our model manages to segment the
salient objects while failing to recognize stuff classes that usually appear as the background in web-collected data (e.g. grass,
floor, wall, etc.). On COCO Object, we observe that our model can not separate co-occurring objects from different classes
into distinct groups very well (e.g. laptop and mouse), which we conjecture is because the captions sourced from the Internet
usually lack fine-grained descriptions to cover the full image content.
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Figure 2. Qualitative results on PASCAL VOC.



Figure 3. Qualitative results on PASCAL Context.



Figure 4. Qualitative results on COCO Object.
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