
A. Proof
Here we define the margin loss.

lγ(f(x), y) = ϕγ(f(x)y −max
i ̸=y

f(x)i), whereϕγ(t) =


1, t < 0

1− γt, 0 ≤ t ≤ 1/γ

0, t > 1/γ

(9)

Lemma 1. Let lγ(x, y) : Rc × Y → R and ϕγ(x) : R → R where

lγ(x, y) = ϕγ [f(x)y −max
i ̸=y

f(x)i],

whereϕγ(x) =


1, x < 0

1− γx, 0 ≤ x ≤ 1/γ

0, x > 1/γ

.
(10)

For any x1, x2 ∈ Rc and y ∈ Y , we have

|lγ(x1, y)− lγ(x2, y)| ≤ 2γ||x1 − x2||∞ (11)

Proof. It is apparent that ϕγ(x) : R → R is γ Lipschitz. And we have

|lγ(x1, y)− lγ(x2, y)|

=

∣∣∣∣ϕγ[(f(x1)y − f(x2)y)− (max
i ̸=y

f(x1)i −max
j ̸=y

f(x2)j)
]∣∣∣∣

≤γ
∣∣(f(x1)y − f(x2)y)− (max

i ̸=y
f(x1)i −max

j ̸=y
f(x2)j)

∣∣
≤γ

∣∣(f(x1)y − f(x2)y)
∣∣+ γ

∣∣max
i ̸=y

f(x1)i −max
j ̸=y

f(x2)j
∣∣

≤2γ||f(x1)− f(x2)||∞

(12)

Lemma 2. Assume the softmax function s : Rc → Rc is defined as follows.

s(x)i =
exp(xi)∑
i exp(xi)

(13)

Then we have

||s(x)− s(y)||∞ ≤ 1

2
||x− y||∞ . (14)

Moreover we have ∥∥(s(x)− s(y))− (s(x′)− s(y′))
∥∥
∞ ≤

1

2
(∥x− x′∥∞ + ∥y − y′∥∞)

(15)

In other words, s(x) and its residual form s(x)− s(y) are both 1/2-Lipschitz with respect to L∞-norm.

Proof. From the definition of Lipschitz continualty, we have |s(x) − s(y)|∞ ≤ L|x − y|∞. Note that |s(x) − s(y)|∞ ≤
supi |s(x)i − s(y)i|.

The gradient is hence the following.

ds(x)i
dxj

=

{
s(x)i(1− s(x)i), i = j
−s(x)is(x)j , i ̸= j

(16)



Note that ||∇is(x)||1 = 2s(x))i(1− s(x))i) ≤ 1/2. Let ⪯ represents the generalized inequality of the nonnegative orthant.
By the mean value theorem, for some δ, s.t. x ⪯ δ ⪯ y, we have

s(x)i − s(y)i ≤ ∇is(δ)
T (x− y) . (17)

By Holder’s inequality,

∇is(δ)
T (x− y) ≤ ||∇is(δ)||1||x− y||∞ ≤ 1

2
||x− y||∞ (18)

To prove the second goal, we can find that

||(s(x)− s(y))− (s(x′)− s(y′))||∞
=||(s(x)− s(x′))− (s(y)− s(y′))||∞
≤||(s(x)− s(x′))||∞ + (s(y)− s(y′)||∞

≤1

2
(||x− x′|∞ + ||y − y′||∞)

(19)

Lemma 3 ( [36]). We add the proof of this lemma here for completeness. Let f : R → R ∈ F be a class of real-value
functions, D be a set of samples. We define a pseudo-metric ∥ · ∥p,D on functions F with respect to vector norm ∥ · ∥p and n
samples |D| = n, where

∥f∥p,D =
[ 1
n

∑
x∈D

|f(x)|p
] 1

p

. (20)

We define the Covering number N (F , ∥ · ∥p,D, ϵ) as the size of the minimal ϵ-cover of F with respect to pseudo-norm ∥ · ∥p,D.
Given

sup
f∈F

∥f∥2,D ≤ sD , (21)

we have

R̂(F|D) ≤ inf
ϵ∈[0,sD/2]

{
ϵ+

√
2sD√
n

√
logN (F , ∥ · ∥1,D, ϵ)

}
(22)

Proof. For any ϵ and D, let C be the minimal-ϵ cover of F , which means for each function f , there exists fϵ ∈ C such that
∥f − fϵ∥1,D ≤ ϵ

R̂(F|D)

=Eσ

[
1

n
sup
f∈F

∑
i

σif(xi)

]

≤Eσ

[
1

n
sup
f∈F

∑
i

σi (f(xi)− fϵ(xi))

]
+

Eσ

[
1

n
sup
fϵ∈C

∑
i

σifϵ(xi)

]

≤ϵ+ Eσ

[
1

n
sup
fϵ∈C

∑
i

σifϵ(xi)

]

≤ϵ+ sup
f∈F

√ ∑
xi∈D

f(xi)2

√
2 log |C|
n

(Massart’s Lemma)

≤ϵ+
√
2sD√
n

√
logN (F , ∥ · ∥1,D, ϵ)



Since this bound stands for any ϵ, Thus we have

R̂(F|D) ≤ inf
ϵ∈[0,sD/2]

{
ϵ+

√
2sD√
n

√
logN (F , ∥ · ∥1,D, ϵ)

}
(23)

Theorem 1. For distilled model fk and class number C, we have

R̂(Lk|Ds)

≤Õ(γ
√
C)max

i
R̂(Ok

i |Ds) (24)

≤Õ(γ
√
C)max

i
B(Ok

i |Ds) (25)

Proof. From Lemma 1 and Lemma 2, we know the Lipschitz constant of lγ ◦ s is γ. Using the L∞-contraction property of
Rademacher complexity [10], we can expand the complexity of loss function to the complexity of logits values in Eq. (24).
Eq. (25) is from Lemma 3.

Theorem 2. For cloned model f c, let ωc = supHc∈Hc ∥Hc∥1,∞, βc = supHc∈Hc,H∗∈H∗ ∥Hc −H∗∥1,∞ and class number
C. We have

R̂(Lc|Ds) ≤ Õ(γ
√
C)min

[
max

i
B(Oc

i |Ds),max
j
ωcB(Ic

j |Ds) + βcB(J ∗
j |Ds)

]
Proof.

R̂(Lc|Ds)

≤Õ(γ
√
C)max

i
R̂(Oc

i |Ds) (26)

≤Õ(γ
√
C)max

i
R̂
({

[Hc(gc(x)− g∗(x))

+ (Hc −H∗)g∗(x)]i
})

(27)

≤Õ(γ
√
C){sup

Hc

∥Hc∥1,∞ max
i
R̂(Ic

i |Ds

)
+ sup

Hc,H∗
∥Hc −H∗∥1,∞ max

i
R̂(J ∗

i |Ds)} (28)

≤Õ(γ
√
C)

[
ωc max

i
B(Ic

i |Ds) + βc max
i
B(J ∗

i |Ds)
]

(29)

Eq. (26) is similar to that in Eq. (24). Eq. 27 is by expanding the functions in Oc
i . Eq. (28) is the property of

Rademacher complexity under linear transformation. Eq. (29) is from Lemma 3. Similar to Theorem 1, we have
R̂(Lc|Ds) ≤ Õ(γ

√
C)maxiB(Oc

i |Ds). Together with Eq. (29), we finish the proof.

B. Analysis over Computational Efficiency
In this section, we further prove that MEDIC is more efficient compared with training from scratch and distillation from

logits under certain assumptions. The key idea is that our algorithm has a smaller sample complexity. Thus MEDIC requires
optimization over a smaller set of examples. And this smaller set of training samples can guarantee faster convergence speed
and less computation power.

We first prove our method has a smaller sample complexity.
For simplicity, we assume the optimal hypothesis exists in our hypothesis family. From equation 6, we further derive the

upper bound of sample complexity of our method. The sample complexity represents how many samples are required to learn
a model with a good performance. Note that because we assume the optimal hypothesis existes in our hypothesis family, the
training regret in equation 1 will be zero for the best hypothesis.



Lemma 4. Specifically, with probability 1− δ, we only need as many as |Ds| samples to achieve a loss regret β, where

|Ds| ≤
9 log(2/δ)

(β − 2R̂(L|Ds))2
(30)

and
β = E(x,y)∼S [lγ(f

c(x), y)− lγ(f
∗(x), y)] (31)

.

Proof. The proof of this lemma is fairly straightforward, which only requires some transformations from equation 6.

From theorem 2, we also know cloned model has a smaller Rademacher Complexity R̂(L|Ds). Combined with Lemma 4,
this indicates cloned model has a smaller sample complexity.

Next, we show a small sample complexity indicates faster convergence. Formally, consider Gradient Descent algorithm
(GD) [6], assume a convex loss function ℓ(w) = 1

|Ds|
∑

(x,y)∈Ds
lγ(f

c(x;w), y) and the gradient ∇wℓ(w) from different
baselines are Lipschitz continuous with constant L. We choose a learning rate s such that s ≤ 1/L.

Given the optimal weight w∗ on the training data, the error bound at optimization step k can be written as [6]

ℓ(wk)− ℓ(w∗) ≤
||w∗ − w0||22

ks
(32)

and requires a computation power dependent on the sample complexity

O(|Ds|k) ≤ O(
klog(δ)

(β − 2R̂(L|Ds))2
) (33)

Note that error bound has the same convergence rate 1
ks for different methods. However, the computation cost is different

for different baselines due to different R̂(L|Ds). The result shows MEDIC will cost less computation power as R̂(L|Ds) is
smaller.

In practice, we can observe from Figure 3 that the sample complexity of MEDIC is at most 1/10 compared with training
from scratch on CIFAR-10. This suggests MEDIC can be 10 times faster than training from scratch.

C. Analysis of Why MEDIC Works
In this section, we further analyze why cloning can be more effective against backdoor attacks compared with fine-tuning

based approach. To do so, we first define a binary classification problem. We later consider a family of backdoors for this binary
classification problem. Through analyzing the classification problem and backdoors, we show that cloning can guarantee the
removal of backdoor while fine-tuning may not. Furthermore, we show our importance can better pinpoint the compromised
neurons. In the following, we first mathematically define the scenario.

Consider a neural network with two neurons in the penultimate layer. Specifically, the activations of the penultimate layer of
neuron networks are written as z ∈ ℜ2. The last layer consists of the fully-connected layer. The binary classification problem
is thus represented as y = sgn(w · z) where w ∈ ℜ2 is a part of learn-able parameters.

Let us consider a learning scenario where the internal activations z = (z1, z2) follows distribution conditioned on the labels.
Specifically, feature z1 contains a strong feature that determines the results. While the other feature z2 is a weaker signal but
can decide the label as well. We further assume z1 is independent of the second feature z2.

Formally, in order to simulate this aforementioned case, we define

z1 ∼

{
U(0.1, 1), y = 1

U(−1,−0.1), y = −1
, z2 ∼

{
U(0, 0.1), y = 1

U(−0.1, 0), y = −1
. (34)

The U represents the uniform distribution. This definition aligns with our description. Note that z1 is a stronger deciding
feature because the margin of z1 between the positive and negative classes are larger than z2. Meanwhile z1 has a larger
magnitude than z2 and thus model are easier to pick up the signal coming from the feature z1.

Based on this learning scenario, we next introduce a family of backdoor attacks where positive samples are classified into
the negative label. Specifically, the backdoor attack can set either feature z1 or z2 of the penultimate layer to a constant k > 0.



The reason we choose a positive constant k is because of the underlying assumption of backdoors. We assume backdoor
patterns are sufficiently different to normal samples. Otherwise, the backdoor attack is nothing but a intended behavior of the
neural networks. In this case, The feature of negative samples should be sufficiently different from the feature of the backdoor
that results in the negative label. This implies that we instead need a positive k for the backdoor attack. This modeling, where
backdoor attack can change either z1 or z2 to a constant value, is motivated by the widely-used patch attack which replaces a
part of the image with a patch pattern. This introduced family of attacks corresponds to this type of attacks on a linear model.

In the following, we show that the backdoor attack has to modify the less important feature z2 to launch the backdoor attack.
From the fact that the model will correctly predict the benign data, we have

(w1z1 + w2z2)y ≥ 0

By including constraints of z1 ≥ 0.1, z2 ≥ 0 and y = 1, we can infer w1 ≥ 0. And thus the backdoor attack must change
z2 = k to launch backdoor attack. Otherwise, w1z1 > 0 can not change the label into the negative one.

Since backdoor attack is successful and will predict the backdoor samples as the negative label, we also have

(w1z1 + w2k)y ≤ 0 .

By including the constraints again, similarly, we will have

w2 ≤ −w1z1
k

≤ −0.1w1

k

From this result, we can see that w2 should have a large negative number for a successful backdoor attack.
Meanwhile, to maintain the correctness of negative samples, we shall have these constraints for negative samples

(w1z1 + w2z2)y ≥ 0,

w2 ≤ 0

y = −1

z1 ≤ −0.1

z2 ≥ −0.1 .

Combining these inequalities and equations, we have

w2 ≥ −w1z1
z2

≥ −w1, .

This suggests the weight of w2 should not be too large to mislead normal classification. In order to satisfy these constraints,
we shall set the constant of trigger pattern to be large enough

k > 0.1 .

Based on this result, we show that cloning can instead guarantee the removal of the backdoor. And we further show that
fine-tuning might not remove the backdoor.

Theorem 3. Now consider the hinge loss function l(w) = (1 − ywT z)+ as the classification loss, and the cloning
loss lclone(w) = λ(w′T z − wT z)2, where w′ is the weight from backdoor model. For any cloning λ that satisfy

λ ≤ E
[
1[1−ywT z>0]yz

(zT z)w′
2

]
, we guarantee the removal of backdoors.

Proof. The gradient of the classification loss on w is thus negative ∇wl(w) ≤ −yz. Meanwhile the gradient of cloning
loss is therefore ∇wlclone(w) = −2λ(w′ − w)z2. Combined the cloning loss and classification loss, we know that when
λ ≤ E

[
1[1−ywT z>0]yz
(zT z)(w′

2−w2)

]
, we will have a negative gradient on w. Through mathematical induction, we can further relax the

nominator as stated in the theorem, for w2 will be positive. Next we show the negative gradient will guarantee the removal
of backdoors. For simplicity, let us assume that we initialize w = 0 during cloning. Now we show that during optimization,
the cloned model will not have backdoor behaviors. This newly initialized model won’t contain backdoor behaviors in this
scenario. During cloning, gradient based optimization on this classification loss will always make a positive w1 and w2. This
means we can guarantee the removal of the backdoor through the unique recipe of training from scratch. However, in the case
of fine-tuning, the initialized value of w1 from backdoor will be a large negative number. In this case, the effectiveness of
fine-tuning based methods will unfortunately hinge on how much change is made to w2 and therefore backdoor removal is not
guaranteed.



Furthermore, let us consider the importance weight from cloning. We calculate the equation as defined in equation 4. We
find that activation importance weight is similar for both w1 and w2 because of the normalization. Meanwhile, the impact
importance weight of w1 is larger than w2. By combining these two importance weight together, the importance of w1 is
thus larger than w2. Given a large enough temperature, the importance for w1 will be close to 1 while importance of w2 will
be close to 0. This shows that our importance weight correctly identifies compromised neuron w2 but instead simulates the
correct neuron w1. , cloning will only leverage the activation from important feature w1.

D. Experiment Details
In this section, we describe the details of our experiments. We use the original code from Badnet [14], Clean Label

attack [46], SIG [3], Reflection attack [30], Polygon attack [35], Filter attack [28], and Adaptive attack [26] to construct
backdoored models. For backdoor removal methods, we leverage the code from Model Connectivity Repair (MCR) [56],
NAD [23], ANP [50], and Fineprune [27]. During the model training and testing, we use the exact same data augmentations,
including resizing and cropping. Wide ResNet16 [54] structure and CIFAR-10 [21] dataset are used for Clean Label, SIG,
Badnet, Composite, and Reflection attacks. For polygon attack, we use ResNet34 [16] and Kitti-City [11] dataset. For filter
attack, we use ResNet34 and Kitti-Road [11] dataset. We utilize 5% of CIFAR-10 training data and 0.5% of Kitti-City and
Kitti-Road training data for the experiments. Note that we use a smaller number of data for large-scale datasets, because there
are much more training samples in the large-scale datasets.

During cloning, we clone the outputs from all the convolution, normalization, and fully-connected layers in the network
structure. These layers have learnable parameters where we aim to copy the functionalities from. We estimate the mean and
standard deviation of internal activations using benign data. We use parameter λ to balance the cloning loss Lclone in Eq.(1)
and the classification loss Lclassification (i.e., cross-entropy loss) as follows. We set λ = 10 in this paper. We also conduct an
ablation study on λ in Appendix E.3.

L(x, y) = Lclassification(x, y) + λLclone(x, y)

In the experiment, we train the model for 60 epochs over the small set of clean data. We use Adam optimizer with a initial
learning rate 1e−2 and apply weight decay of 1e−4. We align the temperature τ in our method so that the clean accuracy of
our model is comparable to others. We conduct the experiments on four GTX 2080 GPUs.

During backdoor removal, we assume we have no knowledge of the type of backdoors injected in the model. We directly
report the performance of the model at the last optimization step. Our reported results are slightly worse than those reporting
the best model during training.

D.1. Algorithm

In Algorithm 1, we show the complete procedures. Specifically, we first select the neurons of interest, which comprises of
the output from convolution, normalization, and dense layers. We then use the available samples to estimate the mean and
variance of corresponding neurons. As the available samples come from the same distribution as the original training data, the
estimation of mean and variance converges exponentially. The fast convergence means the number of samples can be quite
small for an accurate estimation. We compute the weight based on the equations in line 5. In line 6, we incorporate the weight
to cloning loss function. In lines 7-9, we use standard optimization with the loss function.

E. Additional Experiments
E.1. Additional Adaptive Attack

Table 2. The evaluation on an additional adaptive attack.

Baseline FinePrune NAD MCR ANP MEDIC

ASR 97.3 81.6 74.0 93.8 68.9 2.7
Acc. 86.9 85.4 85.6 84.7 82.0 84.7

In this section, we introduce another type of adaptive attack that may constitutes a good baseline. We show that MEDIC
outperforms others by a large margin. [41] shows that reducing the difference between benign samples and backdoor ones may
make backdoor attack stronger. In this experiment, we implement the attack from [41] that minimizes the internal l2 distance
between benign and malicious samples for all layers, and set the fine-tuned penalty for l2 distance to 1e-4. Experiments are



Algorithm 1 MEDIC Cloning Procedure
Input :Dataset with a small number of clean samples Ds, training epochs T , number of batches at each epoch L, neurons from the teacher

model for cloning f∗
i and the corresponding student neurons fc

i .
Output :Sanitized Model fc

1 fc ← RandomInit()
2 Estimate σi, µi of activation f∗

i (x) on input data x ∈ Ds

3 for b← 1 to T · L do
4 Draw a batch of data from B ∈ Ds

5 Calculate w based on Equations 2, 3 and 4

6 Lclone =
∑

(x,y)∈B

[∑
i wi(x, y)

(
f∗
i (x)−fc

i (x)

σi

)2
]

7 Ltotal = Lclassification + λLclone

8 Update fc with∇fcLtotal

9 Adjust the learning rate based on the scheduler

conducted on the same CIFAR-10 setting as in our paper. The results can be found in Table 2. It shows MEDIC is quite
effective, having 65% lower ASR than baselines. This is due to our unique design including the importance criteria and
training from scratch as explained in

E.2. Evaluation on Backdoor Attacks under Distribution Shift

In this section, we further stress test our method by evaluating in a more challenging scenario. In this setting, data augmen-
tations are not used during backdoor attacks. They however are applied during backdoor removal. As data augmentations shift
the distribution of training data, it violates the assumption of MEDIC that available training data during backdoor removal are
sampled from the same distribution. We use the same setup as in Appendix D and conduct the experiments on CIFAR-10 and
Wide ResNet. We evaluate on backdoor attacks SIG, BadNet, and CleanLabel. We do not include Reflection and Warp attacks
as data augmentations are essential for the success of these attacks.

The results are shown in Table 3. Observe that the ASRs are much lower than those in Table 1. This is because these
attacks are less robust if no data augmentation is leveraged during the attack. We can see MEDIC has the best performance
on hard-to-remove backdoors (e.g, CleanLabel attack that uses adversarial training), which is consistent with the results of
using data augmentations during the attack. For other attacks, the results of MEDIC are comparable to those of baselines.
Compared to the results obtained under the same distribution (during attack and removal), we find MEDIC has slightly worse
performance under different distributions. The attack success rates of SIG and BadNet are higher. MEDIC has a better result
on CleanLabel attack compared to Table 1 as the attack is less robust.

Table 3. Comparison with baselines without data augmentation. ± represents the standard deviation over 5 repeated runs.

Attack Metric Original (%)
Method (in percentage %)

Finetune Fineprune NAD MCR ANP MEDIC

CleanLabel
ASR 100 11.6±1.7 11.2±1.5 8.2±1.6 5.9±0.2 7.8±4.4 5.1±0.7
ACC 83.2 81.1±0.1 81.3±0.3 80.9±0.3 80.6±0.1 75.2±1.9 80.7±0.2

SIG
ASR 97.8 3.5±1.6 4.0±1.7 4.7±1.1 0.5±0.2 3.9±2.6 5.1±1.0
ACC 83.5 81.8±0.2 82.1±0.1 82.0±0.1 80.9±0.3 77.7±0.9 79.5±0.1

BadNet
ASR 99.8 3.2±0.3 3.6±0.5 4.1±0.4 2.9±0.1 6.2±2.6 3.6±0.5
ACC 81.9 77.5±0.1 79.6±0.4 75.3±1.1 78.3±0.2 73.4±0.7 79.9±0.2

E.3. Ablation Study on λ

In algorithm 1, we introduce a variable named λ to combine the cross entropy loss and the cloning loss. Specifically, we
have

Ltotal = Lclassification + λLclone



Figure 6. Effect of λ. The experiment is conducted on CIFAR-10 and CleanLabel attack.

In this section, we conduct an ablation study of how λ will impact the performance of cloning. We use the CleanLabel attack
on CIFAR10. In figure 6, we show the result of cloning with different choices of λ. The x-axis indicates the temperature. The
y-axis indicates the ASR (in the left figure) and the clean accuracy (in the right figure).

A large λ means more focus on the cloning loss and less focus on the classification loss. According to our study, enlarging
λ can increase the clean accuracy of the cloned model as shown in the right figure. At the same time, the attack success rate
also increases (see the left figure). To reduce the ASR, we need to simultaneously increase the temperature. By increasing
both λ and the temperature, we can achieve better clean accuracy as well as ASR.

Clean Label SIG BadNet Adaptive Reflection

5% Data ASR 16.8±4.6 1.5±0.7 3.6±0.6 7.1±1.7 6.2±0.5
5% Data Acc. 85.3±0.2 84.4±0.3 84.2±0.2 79.7±0.1 83.5±0.2

10% Data ASR 6.9±1.2 0.5±0.5 3.2±0.5 5.6±0.8 4.0±0.4
10% Data Acc. 85.4±0.3 84.6±0.2 86.8±0.1 80.9±0.2 84.0±0.3

Table 4. an Ablation Study on the Amount of Data

E.4. Ablation Study on Amount of Available Data

In table 4, we conduct an ablation study on the amount of available data during our backdoor removal. We adopt CIFAR-10
for the experiments and test on 5% and 10% available data. The results show that the performance of trigger removal is
positively correlated with the amount of available data.

E.5. Empirical Complexity

The computation cost is approximately proportional to the training epochs. We compare the training epochs of different
methods on CIFAR-10. The results show that MEDIC is within the same order of magnitude as the baselines.

Finetune Fine-prune NAD MCR ANP MEDIC

Training (Epochs) 30 31 40 240 100 60

E.6. Ablation Study on Importance Criterion

In this section, we conduct the ablation study on different importance criteria. We show the combination of both impact
(in eq.(3) and activation (in eq.(2) criteria is beneficial to the backdoor removal. We conduct the study on CIFAR-10 and
Clean Label attack. We repeat the experiments under different criteria and different τ from 1 to 7. For each criterion or their



Figure 7. Effect of Combinations of criteria. The experiment is conducted on CIFAR-10 and CleanLabel attack.

Figure 8. Effect of Model Architecture. The experiment is conducted on CIFAR-10 and BadNet attack.

combination, we draw the trade-off curve between attack success rate and clean accuracy. We repeat 5 times for each point and
use the average value for the report. Figure 7 shows the results. X-axis represents the clean accuracy and y axis represents the
attack success rate. A curve close to the lower-right corner indicates a better performance.

From Figure 7, we can observe the orange curve concentrates on the upper-right corner. It means that with only impact
criterion, the clean label attack can not be completely removed. The reason is that clean label attack involves adversarial
training which makes the backdoor attack quite robust. Therefore benign features and backdoor features are somewhat
activated simultaneously. They won’t be separated by this single criterion. However by adding additional impact criterion,
those backdoor features will be excluded during cloning. Observe that the green curve has much better attack success rate than
the orange one. Furthermore, we can observe that by including both criteria , we have the blue curve. It has the best trade-off
between accuracy and success rate.

E.7. Ablation Study on Model Architecture

In this section, we further study the impact of model architecture. We train the same backdoor attack on three different
types of model architectures, including VGG-11, MobileNet-V1 and ResNet-16. The experiment is conducted on CIFAR-10
and BadNet. Specifically, model VGG contains dropout layers. We found including dropout layers during cloning will make
optimization harder to converge. We therefore remove the additional dropout layers since in theory the expected output
will be similar. we use a learning rate 1e-3 for this experiment to make sure optimization convergence on different models
architectures. .



Figure 8 shows the results. The y-axis represents attack success rate and clean accuracy respectively. The x-axis represents
different temperatures. Observe that cloning is effective in both three very different model architectures. Specifically, we can
reduce the attack success rate of all three models below 5%. Moreover, we find the temperature actually has different impact
over different architectures. Specifically, the MobileNet has the faster reduction in clean accuracy as τ grows.


