Supplementary Material for MM-3DScene

Appendix A: Visualization Results

Fig. ¢ visualizes the masked reconstruction results of
MM-3DScene. It can be observed that: i) For masked in-
put, our mask strategy preserves Informative Points to pro-
vide basic geometric information, which explicitly reduces
the ambiguity during masked reconstruction. ii) For tar-
get, instead of being the original intact scene, it is a rela-
tively more complete one with a smaller masking ratio. This
prompts models to concentrate on reconstructing the local
regional 3D structures where models focus on recovering
regional geometric patterns. iii) For reconstruction result,
our model is able to recover the masked areas, suggesting it
successfully learned numerous visual representations. For
example, our method works well to recover details of the
masked foreground objects (e.g. table and chair). For the
background surfaces (e.g. floor, wall), our method can also
achieve a smooth and complete recovery. In addition to the
visualization of the pre-training reconstruction results, as
shown in the Fig. a, we present the visualization results of
the downstream semantic segmentation task. It can be seen
that compared with other methods, our method can correct
the results in some areas where the prediction is inaccurate.
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Figure a. Qualitative results on S3DIS semantic segmentation.
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Figure b. Visualization of masked scene guided by different for-
mats of local statistics. In this figure, the contour of a table
(i.e., the representative geometric structures) is accurately found
and preserved, when calculating the local difference of coordi-
nates+RGB.

Appendix B: More Ablations of Masked Re-
construction

More formats of local statistics. In our Local-Statistics-
Guided Masking, we exploit local statistics to discover in-
formative points, aiming to accurately retain the representa-
tive geometric structures. The local statistics are denoted by
the local difference between each point and its neighboring
points in terms of coordinates and colors. Here we investi-
gate other possible formats of the local difference, including
point embedding difference (gained by applying MLPs [2]
on each point), only coordinates difference, and only RGB
difference. Fig. b shows that considering the local differ-
ence of both coordinates and RGB is the most applicable
way to find informative points. For example in this figure,
the structural contour of a table is accurately found and
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Figure c. Qualitative results of MM-3DScene masked reconstruction pretext task. Our method can effectively reconstruct the masked areas,
suggesting it learned rich visual representations for understanding 3D scenes.

‘ Pre-training method Local Statistic mloU mAcc
% | Scratch - 70.4 76.5
ii | MM-3DScene (w/o Lesp)  Coordinates 70.6 (+02  76.5 (+0.0)
71t | MM-3DScene (w/o Lcsp) RGB 70.9 +05)  77.0 (+0.5)
iv | MM-3DScene (w/o Losp)  point embedding 70.9 +05)  76.9 (+0.4)
v | MM-3DScene (w/o Lcsp) Coordinates + RGB - 71.1 (+0.7)  77.2 (+0.7)

Table a. MM-3DScene (w/o Lcsp) guided by different formats
of local statistics for S3DIS semantic segmentation.

preserved, when guided by the local differences of coordi-
nates+RGB, which provides useful information hints for re-
covering the masked interior area of this table. As a result,
our method performs best when the masking is guided by
the local statistic of coordinates+RGB, as listed in Table a.

Ablation studies of reconstruction gap.  Our method
uses the incremental masking ratio 8 = {61, ...,0;,...,07}
to progressively mask the scene. During the masked recon-
struction, the masking ratio is 6; for the input scene, and
0;_,, for the target scene, where 7 indicates the masked gap
to be recovered and latently influences the difficulty of the
pretext task. Fig. d provides the ablation study of such re-
construction gap, where our model enjoys the least diffi-
culty and performs best under ¢; — 6,_,, = 0.1, and de-
grades when the gap becomes larger. Additionally, we also
implement the random reconstruction gap, which probably
causes more ambiguity, yielding 70.36% mloU.

Appendix C: Other Backbones with MM-
3DScene

In the main paper, we adopt VoteNet [6] as the backbone
for object detection, and Point Transformer [16] for seman-

Method Model Size ~ Train Time  Infer Time = mAP@0.25 mAP@0.5
VoteNet [6] (scratch) 0.95M 5.9h 0.2s 58.7 354
MM3DScene + VoteNet 1.48M 15.6h 63.1 (+4.4) 415 (+6.1)
H3DNet [14] (scratch) 4.74M 12.3h 7.3s 64.8 47.4
MM3DScene + H3DNet 6.87TM 36.1h 66.8 (+2.0) 489 (+1.5)

Table b. 3D object detection results on ScanNetv2. The baseline
results come from official code implementations. The training and
inference times are evaluated with the same training settings.

Method Model Size ~ Train Time  Infer Time mloU
PointTrans [16] (scratch) 7.76M 17.3h 4.36s 70.4
MM3DScene + PointTrans 8.63M 29.1h 71.9 (+1.5)
Stratified Trans* [3] (scratch) 8.02M 45.7h 11.77s 70.3
MM-3DScene + Stratified Trans* 8.89M 73.2h 71.6(+1.3)

Table c. 3D semantic segmentation results on S3DIS. The baseline
results come from official code implementations. The training and
inference times are evaluated with the same training settings.
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Figure d. Ablation study of masked reconstruction gap
on S3DIS semantic segmentation (based on MM-3DScene w/o
Lcsp).



Method mloU ceil. floor wall beam  col. win. door table chair sofa bookc. board clu.
PointNet [7] 41.1 88.8 973 69.8 0.1 39 463 10.8 58.9 52.6 5.9 40.3 26.4 33.2
SegCloud [9] 48.9 90.1 96.1 699 0.0 184 384 231 704 759 409 58.4 13.0 41.6
TangentConv [&] 52.6 90.5 97.7 740 0.0 207 39.0 313 71.5 694 573 38.5 48.8 39.8
SPGraph [4] 58.0 894 969 78.1 0.0 428 489 61.6 84.7 754  69.8 52.6 2.1 52.2
PCNN [1] 58.3 923 962 759 0.3 6.0 69.5 635 65.6 66.9 689 47.3 59.1 46.2
RNNFusion [12] 57.3 923 982 794 0.0 17.6 228 62.1 80.6 744 66.7 31.7 62.1 56.7
Eff 3D Conv [13] 51.8 79.8 939 69.0 0.2 283 385 483 73.6 71.1 592 48.7 29.3 33.1
PointCNN [5] 57.3 923 982 794 0.0 176 228 62.1 74.4 80.6  31.7 66.7 62.1 56.7
PointWeb [15] 60.3 92.0 985 794 0.0 21.1  59.7 348 76.3 88.3 469 69.3 64.9 52.5
TIAF-Net [11] 64.6 914 98.6 81.8 0.0 349 620 547 79.7 86.9 499 72.4 74.8 52.1
KPConv [10] 67.1 928 973 824 0.0 239 58.0 69.0 815 91.0 754 75.3 66.7 58.9
PointTransformer [16] 70.4 940 985 863 0.0 38.0 634 743 89.1 824 743 80.2 76.0 59.3
MM-3DScene(Ours) ‘ 71.9 ‘ 946 98.6 87.1 0.0 442 629 792  90.7 81.7 743 81.4 79.3 60.3

Table d. Semantic segmentation results on S3DIS dataset evaluated on Area 5.

tic segmentation. In this section, we utilize other backbone
networks for verifying the generalization ability of our MM-
3DScene.

H3DNet object detection. We apply our MM-3DScene
pretrained framework on H3DNet [14] which is a more
powerful network using hybrid geometric primitives based
on VoteNet [6]. As shown in Table. b, MM-3DScene
improves the H3DNet with the mAP@0.25 by 2.0 and
mAP@0(.5 by 1.5, exceeding the performance with VoteNet
as the backbone.

Stratified Transformer semantic segmentation. We also
evaluate the performance of Stratified Transformer [3] as
the backbone on S3DIS semantic segmentation. We repro-
duce the backbone performance using its official code and
report the results in Table. c. Our MM-3DScene surpasses
Stratified Transformer by 1.3% mloU. However, it comes
with a high computational cost (2.5 times of MM3D-Scene
+ PT) and a long training time.

Discussions. Although both H3DNet [14] and Strati-
fied Transformer [3] inherit VoteNet [6] and Point Trans-
former [16], and achieve decent performance, they in-
troduce highly-engineered architectures tailored to their
network-specific operations, making it difficult to evaluate
the improvement made by the self-supervised frameworks.
Thus, we advocate simple and classical baselines, with the
goal of minimizing the influence of network architectures to
better measure the performance gain purely from the self-
supervised pretraining framework — MM-3DScene.

Moreover, both Point Transformer [16] and VoteNet [6]
stand out with conspicuously excellent efficiency, as re-
flected in model size, training time, and inference time of
Table b and Table c, which is highly important for the de-
ployment on real applications.

Appendix D: More fine-grained quantitative
results

To provide a more comprehensive analysis, we present
the segmentation results of each category in Table d. We
observe that most categories have different degrees of im-
provement over the Point Transformer [16] backbone that
we use. For instance, we achieve 6.2% gain on column,
4.9% on door, 3.3% on board, and slight decrease on win-
dow and chair.
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