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1. Necessity of Our New Benchmark

To demonstrate the importance of full convergence and

our proposed benchmark, we follow previous works [3, 6]

and fine-tune SST [1] on uniformly sampled 5% data. We

conduct fine-tuning for 6 epochs and 84 epochs, respec-

tively. The results in Tab. 1 reveal that ProposalContrast sig-

nificantly improves the baseline when the model is trained

with few iterations. However, it slightly diminishes perfor-

mance when the model is fully converged.

The disappearance of pre-training benefits underscores

the necessity of adequate fine-tuning. Therefore, fine-

tuning the model on different uniformly sampled splits us-

ing the same number of epochs, which may result in incom-

plete convergence on smaller splits, cannot precisely assess

pre-training effects. In our main paper, we present evidence

that uniformly sampled splits are actually similar when the

model reaches full convergence. Our proposed benchmark,

which samples data by scene sequences to create diverse

splits, can effectively and comprehensively reveal the pure

improvements of pre-training.

Table 1. Fine-tuning on uniformly sampled 5% data.

Initialization
6 Epochs 84 Epochs

L2 mAP L2 mAPH L2 mAP L2 mAPH

Random 40.90 34.12 63.00 58.86

ProposalContrast [6] 47.56 41.30 62.57 58.75

MV-JAR 50.67 45.02 65.14 61.74

2. More Results on Waymo Subsets

To reduce performance variance on our 5% and 10%

splits of the Waymo [4] dataset, we randomly sample each

split three times to form three subsets. In the main paper,

� Corresponding author.

we report the detection results of SST fine-tuned with Sub-

set 0. In this supplementary material, we present the de-

tection results of SST fine-tuned with the other two subsets

in Tab. 4 and Tab. 5. Additionally, we report the average

results across all three subsets in Tab. 6.

3. Experiments with Convolution-based Detec-

tors

Implementation details. Our MVJ and MVR directly

mask the raw inputs of LiDAR point clouds, making them

suitable for most 3D detectors that downsample the point

clouds into voxels and extract voxel features for percep-

tion. However, MVJ aims at predicting the voxel positions,

which is necessary for convolutional operations. Directly

applying MVJ to convolution-based backbones may result

in information leakage and trivial pre-training. This is not

an issue with Transformer-based backbones, as the atten-

tion mechanism does not require position information to

perform, and we do not add positional embeddings during

pre-training. On the other hand, MVR predicts voxel shapes

while retaining position information, making it compatible

with convolution-based detectors without modification.

To overcome the limitation of MVJ when applied to

convolution-based detectors, we permutate the masked vox-

els by randomly placing them in the partitioned window

before feeding them to the convolutional backbones. This

permutation hides the original position information of the

masked voxels, avoiding information leakage and making

MVJ pre-training meaningful.

Experimental Results. To evaluate the performance of

our proposed methods on convolution-based detectors, we

pre-train PointPillar [2] and CenterPoint (Pillar) [7] with

MVR and MVJ as SST. We fine-tune these models on our

5% split and report their overall L2 performances in Tab. 2.

Our experimental results demonstrate that both MVJ and

MVR can work effectively for convolution-based detectors,
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showcasing the generalization abilities of our methods.

Table 2. Performances with convolution-based detectors.

Initialization
PointPillar [2] CenterPoint [7]

L2 mAP L2 mAPH L2 mAP L2 mAPH

Random 41.27 35.10 36.21 32.26

MVR 43.82+2.55 37.97+2.87 38.02+1.81 33.73+1.47

MVJ 43.01+1.74 37.11+2.01 38.61+2.40 34.48+2.22

4. Effects of Pre-training on Varying Distances

In order to investigate the influence of pre-training across

diverse distances, we present the L2 mAPH performance

using 5% fine-tuning data for different distance intervals in

Tab. 3. It can be observed that the performance enhance-

ment of MVR declines as the distances increase, primarily

boosting MVJ (i.e., MV-JAR) within the 0m-30m range. A

plausible explanation for this phenomenon is the reduction

in point density at greater distances, which makes the dense

point clusters at closer ranges less ambiguous for the model

to reconstruct voxel shapes. MVJ consistently outperforms

MVR across various distance intervals, reinforcing our hy-

pothesis that capturing voxel distributions plays a more cru-

cial role in the model’s representation learning. This is be-

cause LiDAR detectors downsample points into voxels to

facilitate perception.

Table 3. Overall L2 mAPH across various distances.

Initialization
Overall

0m-30m 30m-50m 50m-inf

Random 60.15 34.61 18.18

MVR 62.77 +2.62 36.56+1.95 19.94+1.76

MVJ 65.66+5.51 40.61+6.00 23.07+4.89

MV-JAR 66.95+6.80 40.62+6.01 22.88+4.70
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Table 4. Data-efficient 3D object detection results of SST on the Waymo validation set, fine-tuned with Subset 1.

Data amount Initialization
Overall Car Pedestrian Cyclist

L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH

5%

Random 47.74 43.69 50.24 49.75 51.68 41.26 41.29 40.07

PointContrast [5] 48.97 44.91 52.35 51.85 52.49 41.95 42.07 40.91

ProposalContrast [6] 49.87 45.83 52.79 52.31 53.30 43.00 43.51 42.18

MV-JAR (Ours) 52.73+4.99 48.99+5.30 56.66 56.21 57.52 47.61 44.02 43.15

10%

Random 55.95 52.15 55.23 54.76 60.61 50.86 52.01 50.84

PointContrast [5] 55.22 51.31 55.62 55.15 59.25 49.17 50.81 49.60

ProposalContrast [6] 55.59 51.67 55.57 55.12 60.02 49.98 51.18 49.90

MV-JAR (Ours) 58.61+2.66 55.12+2.97 58.92 58.49 63.44 54.40 53.48 52.47

Table 5. Data-efficient 3D object detection results of SST on the Waymo validation set, fine-tuned with Subset 2.

Data amount Initialization
Overall Car Pedestrian Cyclist

L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH

5%

Random 42.59 38.83 50.09 49.59 53.88 44.06 23.79 22.85

PointContrast [5] 44.48 40.55 51.87 51.37 55.36 45.03 26.22 25.24

ProposalContrast [6] 45.21 41.45 52.29 51.82 56.23 46.28 27.10 26.24

MV-JAR (Ours) 47.93+5.34 44.50+5.67 56.22 55.78 58.80 49.77 28.75 27.95

10%

Random 54.85 51.22 54.95 54.51 62.11 52.76 47.49 46.40

PointContrast [5] 54.80 51.02 55.41 54.95 60.56 50.86 48.44 47.24

ProposalContrast [6] 54.77 51.09 55.64 55.20 60.54 51.16 48.14 46.92

MV-JAR (Ours) 58.29+3.44 54.99+3.77 59.17 58.74 64.58 56.02 51.12 50.20

Table 6. Average results on the Waymo validation set, averaged across SST fine-tuned with Subset 0-2.

Data amount Initialization
Overall Car Pedestrian Cyclist

L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH L2 mAP L2 mAPH

5%

Random 44.91 40.96 50.45 49.94 52.77 42.53 31.52 30.40

PointContrast [5] 46.26 42.25 52.11 51.61 53.84 43.40 32.82 31.74

ProposalContrast [6] 47.23 43.28 52.58 52.10 54.61 44.37 34.50 33.38

MV-JAR (Ours) 50.39+5.48 46.72+5.76 56.45 56.00 57.99 48.36 36.74 35.81

10%

Random 55.04 51.28 55.01 54.55 61.09 51.44 49.02 47.84

PointContrast [5] 54.57 50.75 55.26 54.80 59.85 50.05 48.61 47.41

ProposalContrast [6] 54.75 50.96 55.47 55.01 60.19 50.51 48.60 47.37

MV-JAR (Ours) 58.12+3.08 54.72+3.44 58.84 58.41 63.77 55.03 51.74 50.73
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