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1. Introduction
In this Supplementary Material, we first provide a de-

tailed derivation of our probabilistic driven diffusion prior,
then additional training recipe for NeuralLift-360. Further-
more, we present more implementation details and experi-
mental comparisons.

2. Detailed Derivation.
In this section, we provide detailed mathematical deriva-

tion towards our objective loss. We repeat our notations and
settings as below.

Notations. Given an image y ∈ RN and its text descrip-
tion z ∈ RD, NeuralLift-360 intends to reconstruct a 3D
scene V ∈ RM , where V is a parameterization of 3D scene
that can be be either a radiance volume or the implicit neural
representation. We regard y, z and V as random variables.
Further on, we define h(V ,Φ) as the rendering function
that displays V with respect to the camera pose Φ.

2.1. Pose Conditioned Latent Model

To reconstruct V from y and z, we maximize a log-
posterior and apply Bayesian rule:

log p(V |y, z) = log p(y|V , z)︸ ︷︷ ︸
likelihood

+ log p(V |z)︸ ︷︷ ︸
prior

+const.,

(1)

where const. denotes the evidence term, a constant. Next
step is to introduce camera pose Φ ∈ SO(3)×R3 as a latent
variable, then the likelihood term can be rewritten as:

p(y|V , z) =

∫
p(y|V ,Φ, z)p(Φ|V , z)dΦ (2)

=

∫
p(y|V ,Φ, z)

p(V |Φ, z)p(Φ)

p(V |z)
dΦ (3)

=
1

p(V |z)
EΦ [p(y|V ,Φ, z)p(V |Φ, z)] . (4)

where we assume Φ is independent of z. We proceed by
substituting Eq. 3 into Eq. 1:

log p(V |y, z) = log
EΦ [p(y|V ,Φ, z)p(V |Φ, z)]

p(V |z)
+ log p(V |z) + const. (5)

= logEΦ [p(y|V ,Φ, z)p(V |Φ, z)] + const.
(6)

After we apply Jensen inequality to obtain an evidence
lower evidence of Eq. 1:

logEΦ [p(y|V ,Φ, z)p(V |Φ, z)] + const.

≥ EΦ [log p(y|V ,Φ, z) + log p(V |Φ, z)] + const. (7)

Afterwards, we use rendering function h(V ,Φ) to bridge
the 3D likelihood estimation to the image domain. Specif-
ically, we let p(y|V ,Φ, z) = p(y|h(V ,Φ), z) and
p(V |Φ, z) = p(h(V ,Φ)|z). Then we derive a general
training objective (omitting the constant):

L = −EΦ

log p(y|h(V ,Φ), z)︸ ︷︷ ︸
referenced loss

+ log p(h(V ,Φ)|z)︸ ︷︷ ︸
non-referenced loss


(8)

= −EΦ [log p(h(V ,Φ)|y, z)] + const., (9)

where the constant equals to − log p(y|z).

2.2. Diffusion Model as Evidence Lower Bound

Our next step is to surrogate the probability densities
with the score matching loss, which can leverage pre-
trained generative prior for view regularization. Our deriva-
tion mainly follows from [6, 10]. Below we summarize key
steps to attain the ELBO, and more details can be found in
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Chap. 3 of [10]:

log p(x|y, z) ≥ E
[
log

p(x1, · · · ,xT |y, z)
q(x1, · · · ,xT |x0)

]
=

T∑
t=2

Eq(xt|x0) [DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt,y, z))]

+ Eq(x1|x0) [log pθ(x0|x1)] + const. (10)

Consider a diffusion process with marginal distribution:
q(xt|x0) = N (αtx0, σ

2
t I). As shown by [6, 17], the KL

divergence term can be simplified as:

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt,y, z)) (11)

= w(t)Eϵ∼N (0,I)

[
∥ϵθ(αtx0 + σtϵ|y, z)− ϵ∥22

]
, (12)

and similarly, we have:

Eq(x1|x0) [log pθ(x0|x1)] (13)

= w(1)Eϵ∼N (0,I)

[
∥ϵθ(α1x0 + σ1ϵ|y, z)− ϵ∥22

]
,

(14)

where w(t) is a time dependent coefficient, ϵθ(x|y, z) =
∇ log pθ(x|y, z) is known as the score function of the ap-
proximated image distribution. Altogether, we can utilize
the following objective in the place of Eq. 8 (omitting con-
stants):

Ldiff =

−
T∑

t=1

w(t)EΦ,ϵ

[
∥ϵθ(αth(V ,Φ) + σtϵ|y, z)− ϵ∥22

]
.

(15)

Finally, we introduce how to leverage classifier guidance
idea [8] to compute ϵθ(x|y, z). Define some off-the-shelf
text-to-image diffusion model as ϵθ(x|z). Note that it does
not condition on the reference image y. First, we use simple
Bayesian rule to cast pθ(x|y, z) as:

pθ(x|y, z) =
pθ(y|x, z)pθ(x|z)

pθ(y|z)
. (16)

Then the score function can be written as:

ϵθ(x|y, z) = ∇ log

(
pθ(y|x, z)pθ(x|z)

pθ(y|z)

)
(17)

= ∇ log pθ(y|x, z) + ϵθ(x|z). (18)

One can further use classifier-free guidance to further im-
prove Eq. 18 as:

ϵθ(x|y, z) = ∇ log pθ(y|x, z) + (1 + ω)ϵθ(x|z)− ωϵθ(x),
(19)

where ω is the guidance strength of the classifier.

2.3. Computational Specifications

After going through all the probabilistic derivations, we
specify several implementations leading towards our final
loss function:

CLIP Similarity Guidance. We choose to use CLIP as
our reference image guidance. Specifically, we measure the
discrimination with a distance metric on the feature space:

pθ(y|xt, z) ∝ exp

[
−ϕ

(
xt − σtϵθ(xt|z)

αt
,y

)]
, (20)

where we choose the inner product on the CLIP embedding
space [13] as the similarity metric 1, i.e., ϕ(x,y) = ⟨x,y⟩.
Then we can derive the guidance penalty term we use in our
implementation:

log pθ(y|xt, z) ∝ −
〈
F

(
xt − σtϵθ(xt|z)

αt

)
, F (y)

〉
,

(21)

where F (·) is a CLIP image encoder.

Camera Sampling Strategy. Camera poses Φ can be in
general uniformly sampled over SO(3) × R3 (with reason-
ably bounded sub-region). Since our reconstruction tasks
are object centric, we first sample the camera positions over
a unit sphere and control the camera orientation to look at
the origin point. What’s more, we can leverage a more
strategic scheme to fully utilize the reference view. To be
more concrete, we consider a Bernounii random variable
B ∼ Bern(λ) (as if a switch). When the variable is turned
on (i.e., B = 1), we utilize the aforementioned sampling
algorithm on the unit sphere, and apply Ldiff as our loss
function. When it is turned off, we only select the fixed
camera pose Φ0 associated with our reference image (i.e.,
a Dirac delta distribution centered at Φ0), and only max-
imize a likelihood between the synthesized image and the
reference image:

pθ(h(V ,Φ)|y, z, B = 0) = N (h(V ,Φ)|y, σ2I). (22)

This leads to the definition of our final objective:

Ltotal = −EΦ [log p(h(V ,Φ)|y, z)] (23)
= −p(B = 1)EΦ|B=1 [log p(h(V ,Φ)|y, z, B = 1)]

− p(B = 0) log p(h(V ,Φ0)|y, z, B = 0) (24)

≤ λLdiff + (1− λ)/σ2 ∥h(V ,Φ0)− y∥22 . (25)

1Rigorously speaking, inner product is not a metric. However, it is
widely used as a similarity score.



Fine-tuning Diffusion Model. We also interpret our do-
main adaption finetuning as a step to condition the diffusion
model ϵ(x|z) on the reference information y:

ϵθ(x|z)
Lfinetune w/ y−−−−−−−→ ϵθ∗(x|y, z). (26)

Pseudo-Depth Supervision. The pseudo-depth supervi-
sion on the reference view can be viewed as adding a regu-
larization term onto Eq. 22:

pθ(h(V ,Φ)|y, z, B = 0) = (27)

N (hrgb(V ,Φ)|y, σ2I) · p(hdepth(V ,Φ)|y),

where we extend the renderer h(V ,Φ) to independently
render RGB image and depth map, and we further define
p(d|y) ∝ exp(−Lranking(d, G(y))), G(·) is a monocular
depth estimator.

3. Additional Training Recipe
Lighting Augmentation with Shading NeRF is prone to
poor geometry, so we incorporate the supervision of surface
normal from RefNeRF [20] to improve the geometry qual-
ity. Similar to DreamFusion [12] and RefNeRF [20], we re-
place NeRF’s parameterization of view-dependent outgoing
radiance with the surface itself. Compared with traditional
NeRF that emits radiance conditioning on the viewing di-
rection, our implementation expresses the geometry itself
and allows additional shading.

The surface normal vector is defined as the negative gra-
dient of the volume density with respect to the 3D loca-
tion [3, 18, 20],

n̂(x) = − ∇σ(x)

∥∇σ(x)∥
(28)

As a result, we render the color along the ray during diffuse
reflectance [14] as follows:

c = ρ ◦ (ℓρ ◦max(0,n · (ℓ− µ)/∥ℓ− µ∥) + ℓa) , (29)

where l is the point light location, lp is the color of the point
light, and la is the color of the ambient light. We generate
the point light location by randomly sampling an offset from
the camera location l ∼ N (lcam, I).

Geometry Regularizations Without any regularization,
the NeRF model is free to generate arbitrary geometry in
those unobserved regions. Traditionally, this doesn’t affect
the image quality, but when we perform additional shad-
ing, the image quality becomes dependent on the geometry
quality, which requires additional priors.

We observe that the generated 3D object tends to produce
a flat object with foggy floaters in the back. This is due to

the object generating a semi-transparent surface in the back
and emitting the front view directly. We avoid this issue by
penalizing the backward-facing surface normal [20],

Lorient =
∑
i

detach(wi)max (0, n̂′
i · d)

2
, (30)

where d is the ray direction. This orient loss prevents the
surface normal from being in the same direction as the ray
direction, so that the shading will not result in a totally black
surface.

Since we don’t have depth regularization for exact val-
ues, the generated contents might be floating in front of
the camera. While this can deliver good RGB images in
some viewing directions, the exploding geometry usually
suffers from severe artifacts. To this end, we utilize distor-
tion loss [2, 19] and sparsity loss to provide unsupervised
regularizations. The distortion loss encourages each ray to
be as compact as possible:

Ldist(s, w) =

N−1∑
i=0

N−1∑
j=0

wiwj

∣∣∣∣si + si+1

2
− sj + sj+1

2

∣∣∣∣
+

1

3

N−1∑
i=0

w2
i (si+1 − si) ,

(31)
where (si+1 − si) is the length and ( si+si+1

2 ) is the mid-
point of the i-th query interval. The sparsity loss further
improves the sparsity of the occupancy by imposing an L1
regularization on the generated alpha map.

Lsparsity =

∥∥∥∥∫ tf

tn

T (t)σ(r(t))dt

∥∥∥∥ . (32)

To avoid the depth we generate being spiky, we further
incorporate the inverse depth smoothing loss [21] as a self-
supervision:

Lsmooth (di) = e−∇2I(xi) (|∂xxdi|+ |∂xydi|+ |∂yydi|) ,
(33)

where di is the depth map, ∇2I(xi) refers to the Laplacian
of pixel value at location xi. This helps our rendered depth
to be consistent with the rendered RGB, instead of only fol-
lowing the internal ranking relationship.

Multi-resolution rendering Since we use Instant-
NGP [11] based implementation to support rendering
patches of 128×128 during training, obtaining the gradient
using autograd is tedious to implement. We instead utilize
the finite difference method to obtain the density gradient.
To do so, we have to query our model eight more times in
the 3D neighborhood of each point. The GPU consumption
is huge if we try to obtain a normal map in high resolution,
so we only render a low resolution 100 × 100 normal map
to lower the computation burden.
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Figure 1. More visual comparisons with state-of-the-art methods. We also provide a video comparison in “video.mp4”.

Background Scene Representation The diffusion mod-
els are usually trained on images with diverse backgrounds,
but we only focus on the foreground object. To solve this
gap, we utilize another background NeRF to generate co-
herent background. The background NeRF takes view-
ing direction as input and generates a harmonious back-
ground. We empirically find that incorporating this back-
ground module alleviates the burden for the foreground
NeRF, and it helps to remove floating artifacts.

Guidance weight choice Large guidance weight hurts the
performance of general text-to-image models such as Ima-
gen [16] and Stable Diffusion [15] because they are per-
forming the iterative sampling. Given a large guidance
weight, the result x0 prediction might exceed the range of
[−1, 1]. This leads to a train-test mismatch for them since,
during training, the input for the diffusion models is gener-
ally inside the range of [−1, 1]. However, such a range issue
doesn’t exist in our case since we only do one iteration of
sampling for each rendered image. We empirically choose
the guidance weight as 100.

4. Implementation Details
NeRF Architecture We implement our NeRF archi-
tecture based on the open-source implementation torch-
ngp [1]. The NeRF consists of a hash grid encoder with
16 levels and an MLP to query the features. The coarse
resolution is 16, and the finest resolution is 2048. The num-
ber of feature dimensions per entry is 2 for the hash grid.
Our MLP consists of a sequence of four fully-connected
layers with residual connections. The activations layers
in between are SiLU [5]. The final output layer of the
NeRF MLP is four channels, consisting of color and den-
sity. We further employ a Sigmoid activation on the density
before volumetric rendering. We also adopt a background
NeRF to module the background scene. The background
module conditions on the ray direction and has three fully-
connected layers.

Diffusion Prior Settings We utilize Stable Diffusion ver-
sion 1.4 as our diffusion prior. During training, we uni-
formly sample the timesteps in the range of [50, 950]. This
design stabilizes training by avoiding very high and very
low noise levels. We use PNDM [9] Sampler with a train-
ing timestep of 1,000 to perform the noise perturbation and



calculate the x̂0 estimate. The β range is [0.00085, 0.012],
and the β schedule is scaled linear.

Training Settings We implement our framework using
PyTorch. To speed up the training, we implement gradi-
ent propagation for depth using CUDA with the help of Py-
Torch extensions. The whole framework is trained on a sin-
gle A6000 GPU for 10k steps. The overall training takes
about 1.5 hours. For the first 1k steps, we disable the shad-
ing, and for the remaining steps, we use diffuse shading for
50% of the time. During inference, we disable the shading.

The initial learning rate is 1e− 3, and decay the learning
rate using LambdaLR Scheduler in PyTorch. The optimizer
is Adam, and the betas are set to (0.9, 0.99). We set the
weight for Lorient to be 10. For Ldist, we find reasonable
weights to lie in [1e − 2, 1e − 1]. For Lsparsity, we set the
weight to be 1e − 3. For Lsmooth, we set the weight to be
0.1.
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