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In this supplement we provide additional implementa-
tion details; quantitative experimental and qualitative visual
results.

1. Implementation Details
We open-source our code and models at

https://github.com/NVlabs/ODISE.

Training We train ODISE for 90k iterations with images
of size 10242 and use large scale jittering [7] with random
scales between [0.1−2.0] as data augmentation. We use 32
NVIDIA V100 GPUs with 2 images per GPU with an ef-
fective batch size is 64. We use the AdamW [14] optimizer
with a learning rate 0.0001 and a weight decay of 0.05. We
use a step learning rate schedule and reduce the learning
rate by a factor of 10 at 81k and 86k iterations. We set the
balancing factor between the diffusion and discriminative
models to λ = 0.65 for all tasks. Following [2–4], we use
Hungarian matching to match the predicted masks to the
ground-truth ones. We compute the training losses between
the matched pairs.

Open-Vocabulary Inference An object can often be de-
scribed by more than one possible description, e.g., the dog
category could be described by “dog” or “puppy”. We use
the same prompt engineering strategy as in [8] to create an
ensemble of text prompts for each test category and predict
the category with the maximum probability.

Speed and Model Size It takes 5.3 days to train ODISE
for 90k iterations on the COCO dataset. It has 28.1M train-
able parameters (only 1.8% of the full model) and 1,493.8M
frozen parameters (including Stable Diffusion and CLIP). It
performs single image inference at 1.26 FPS on an NVIDIA
V100 GPU and uses 11.9 GB memory with an image of
size 10242. We also replace the bounding box cropping
proposed in [10] that runs at 0.38 FPS, with mask feature
pooling described in Section 3.6 of the main paper. Mask
pooling yields a 3x speedup, while maintaining similar PQ
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on ADE20K: 23.4 for mask pooling versus 23.7 for bound-
ing box cropping.

2. Experiments

2.1. Comparison with State of the Art

Open-Vocabulary Panoptic Segmentation Besides
panoptic quality (PQ), we additionally report the detailed
metrics of segmentation quality (SQ) and recognition
quality (RQ) for ODISE and MaskCLIP [6] on both the
thing (Th) and stuff (St) categories of the ADE20K dataset
in Table 2.1. Here, all models were trained on COCO.
ODISE outperforms MaskCLIP [6] w.r.t. all metrics.

Method PQ PQTh PQSt SQ SQTh SQSt RQ RQTh RQSt

MaskCLIP 15.1 13.5 18.3 70.5 70.0 71.4 19.2 17.5 22.7
ODISE (Ours) 23.4 21.9 26.6 78.1 77.7 78.8 28.3 26.6 31.6

Table 2.1. Detailed panoptic segmentation metrics on
ADE20K. ODISE outperforms MaskCLIP [6] w.r.t. all metrics.

Cityscapes Mapillary Vistas
Method PQ SQ RQ PQ SQ RQ
CLIP(H) 18.5 69.4 24.2 11.7 60.5 15.1
ODISE (Ours) 23.9 75.3 29.0 14.2 61.0 17.2

Table 2.2. Results of panontic segmentation on Cityscapes and
Mapillary Vistas. ODISE outperforms CLIP(H) by a large mar-
gin on both datasets.

We also evaluate ODISE trained on COCO on the
Cityscapes [5] and Mapillary Vistas [15] datasets in Ta-
ble 2.2. Since the source code for MaskCLIP [6] is not
publicly available, we regard ODISE’s implementation with
CLIP(H) features (from Table 3 of the main paper) as
a close proxy to MaskCLIP and compare against it (Ta-
ble 2.2). Here too, ODISE, which is based on diffusion
features, outperforms its CLIP(H) variants by large mar-
gins. Note that in this experiment, we use the original text
labels provided with the respective test datasets and didn’t
carefully select the category names for computing the text
embedding. Hence, the results could be further improved
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if categories like “terrain” are converted into more detailed
descriptions.

Finally, to additionally verify the effectiveness of
ODISE, we also swap the training and evaluation datasets,
i.e., we train on ADE20K and evaluated on COCO, and
report the results in Table 2.3. Here too, we regard the
variant of ODISE with CLIP(H) features as a proxy to
MaskCLIP [6] and compare against it. ODISE outperforms
its CLIP(H) variant by a large margin.

COCO ADE20K
Method PQ SQ RQ PQ SQ RQ
CLIP(H) 20.7 72.6 26.5 25.7 72.3 32.1
ODISE (Ours) 25.0 79.4 30.4 31.4 77.9 36.9

Table 2.3. Results of swapped training on ADE20K and testing
on COCO. ODISE outperforms CLIP(H) by a large margin on
both datasets.

Open-Vocabulary Object Detection We also evaluate
ODISE for the task of open-vocabulary object detection on
the LVIS [11] dataset (Table 2.4). By regarding all cate-
gories to belong to “things”, we directly evaluate on LVIS’s
object detection labels, which contain annotations for 1203
fine-grained categories for COCO [13] images. For this
task, we measure mAPr, which denotes the mAP score
on 337 rare categories only. We evaluate ODISE trained
with both types of supervision: mask category labels or
image captions. ODISE outperforms MaskCLIP [6] by a
large margin w.r.t. both mAP and mAPr. Note that the
validation split of LVIS [11] has overlapping images with
COCO [13]’s training split, but the category labels of LVIS
are only available during inference.

Supervision LVIS
Method label mask caption mAP mAPr

MaskCLIP [6] ✓ ✓ 8.4 -

ODISE (Ours) ✓ ✓ 15.4 19.4
ODISE (Ours) ✓ ✓ 17.1 21.1

Table 2.4. Open-Vocabulary Object Detection. mAPr denotes
the mAP score for 337 rare categories only. ODISE surpasses
MaskCLIP by a large margin, both with category label and cap-
tion during training.

Open-World Instance Segmentation The task of open-
world instance segmentation aims at discovering at test
time, all plausible instance masks that may be present in an
image in a class-agnostic manner. We also evaluate ODISE
in for this task. Following [17], we report the average re-
call of 100 mask proposals (AR@100) on the UVO [18]
and ADE20K [19] datasets. As reported in Table 2.5, here
too we outperform the existing state of the art [17] by 14.3
points on UVO and 9.3 points on ADE20K. It demonstrates
that with the internal representation of pre-trained text-to-

image diffusion models it is plausible to discover open-
world instances.

AR@100
Method UVO ADE20K COCO
LDET [12] 42.6 - -
GGN [17] 43.4 21.0 -
ODISE (Ours) 57.7 30.3 56.6

Table 2.5. Open-world Instance Segmentation. ODISE outper-
forms GGN on discovering open-world instances on both the UVO
and ADE20K datasets.

2.2. Ablation Study

Visual Representations In Fig. 2.1 we show k-means clus-
tering of the text-to-image diffusion model’s and CLIP’s
frozen internal features; diffusion features are much more
semantically differentiated. Quantitative comparisons of
ODISE and its CLIP(H) variant in Table 3 of the main paper
and Table 2.2 and Table 2.3 further substantiate diffusion
features’ superiority over those of CLIP’s.

Frozen Diffusion Features Frozen CLIP Features

Figure 2.1. K-mean clustering of text-to-image diffusion and
CLIP models’ internal features. The internal features of the dif-
fusion model are much more semantically differentiated than those
from CLIP.

Open-vocabulary Inference Pipelines For final open-
vocabulary classifciation, we fuse class prediction from the
diffusion and discriminative models. We report their in-
dividual performance in Table 2.6. Individually the diffu-
sion approach performs better on both the ADE20K and
COCO datasets than the discriminative only approach. Nev-
ertheless, fusing both together results in higher accuracy
on both datasets. Finally, note that even without fusion,
our diffusion-only method already surpasses the existing
MaskCLIP method (in Table 1 of the main paper).

Diffusion Time Steps We study, which diffusion step(s)
are most effective for extracting features from, similarly to
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model ADE20K COCO
diffusion discriminative PQ mAP mIoU PQ mAP mIoU

✓ 15.0 9.6 17.5 26.5 23.5 23.6
✓ 20.1 10.3 24.4 42.3 37.8 52.0
✓ ✓ 23.3 13.0 29.2 44.2 38.3 53.8

Table 2.6. Ablation results of fusing class predictions of diffu-
sion and discriminative models.

ADE20K COCO
time step PQ mAP mIoU PQ mAP mIoU

0 23.3 13.0 29.2 44.2 38.3 53.8
100 22.8 12.5 29.3 43.2 36.4 52.3
200 21.5 11.9 28.0 42.4 35.1 51.7
500 20.9 11.1 27.0 38.2 31.1 47.6

0+100+200 23.1 12.9 29.7 43.7 37.4 53.0
learnable 22.8 12.9 29.2 44.0 37.5 53.4

Table 2.7. Ablation results of different diffusion time steps.
0+100+200 denotes the concatenation of the features at time steps
0, 100, and 200.

DDPMSeg [1]. The noise process is defined as

xt ≜
√
ᾱtx+

√
1− ᾱtϵ, ϵ ∼ N (0, I). (1)

The larger the t value is, the larger the noise distortion added
to the input image is. In stable diffusion [16] there are a total
of 1000 diffusion steps. From Table 2.7, we observe that all
metrics decrease as t increases and the best results are for
t=0 (our final value). Concatenating 3 time steps, 0, 100,
200, yields a similar accuracy to t=0 only, but is 3× slower
in terms of inference time and hence is not preferred. We
also train our model with t as a learnable parameter, and find
that many random training runs all converge to a value close
to zero, further validating our optimal choice of t=0. A
plausible explanation for this observed phenomenon could
be that the highest-quality features for the downstream task
of segmentation may be derived from the least noisy input
image at t = 0.

3. Qualitative Results
To demonstrate the open-vocabulary recognition capa-

bilities of ODISE, we merge the category names from
LVIS [11], COCO [13], ADE20K [19] together and perform
open-vocabulary inference with ∼1.5k test classes. We
only train ODISE on COCO’s [13] training dataset and eval-
uate open-vocabulary panoptic inference on ADE20K [19]
and Ego4D [9]. The qualitative results on COCO’s [13] val-
idation dataset, ADE20K [19] and Ego4D [9] are shown in
Fig. 2.2, Fig. 2.3 and Fig. 2.4, respectively. Most categories,
e.g., “police cruiser”, “flag”, “conveyor belt”, “chandelier”,
“aquarium”, “grocery bag”, “power shovel”, etc., are novel
categories from LVIS [11] or ADE20K [19] that are not an-
notated in COCO [13]. It is worth noting that Ego4D [9] is a

video dataset, which consists of diverse ego-centric videos.
Despite the large domain gap between the testing dataset
Ego4D [9] and our training dataset COCO [13], ODISE
still outputs good-quality plausible panoptic segmentation
results on Ego4D’s novel categories.

4. Limitations and Future Work

In the current datasets, the category definitions are some-
times ambiguous and non-exclusive, e.g., in ADE20K,
“tower” is often mis-classified as “building”. Although this
could be mitigated by prompt and ensemble engineering,
how category definitions affect evaluation accuracy, would
be interesting to analyze in the future.

5. Ethics Concerns

The text-to-image diffusion model that we use is pre-
trained with web-crawled image-text pairs collected by pre-
vious works. Despite applying filtering, there may still be
potential bias in its internal representation.
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Figure 2.2. Qualitative visualization of open-vocabulary panoptic segmentation results on COCO.
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Figure 2.3. Qualitative visualization of open-vocabulary panoptic segmentation results on ADE20K.
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Figure 2.4. Qualitative visualization of open-vocabulary panoptic segmentation results on Ego4D.
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