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Figure A.1. The distribution of pairwise degree of angle. Most angles are concentrated around ⇠ 16 degrees, indicating
that the angular distances between feature embeddings given by different ensemble members are not trivially close to
zero.

A. Discussions on Ensemble Diversity

Ensembles are created by combining several individual models. It is widely accepted [7, 17] that the prediction
performance of an ensemble jointly depends of the individual performance and the diversity of its individual
members. In particular, diversity has long been recognized as a key factor in ensemble performance [13, 6, 2].
In the case of deep ensembles, diversity is achieved via some implicit techniques such as random initialization
[14, 27], tweaking the optimizer [18, 30] or employing different hyperparameter settings [28]. Therefore, in
Algorithm 1, we train the ensemble members with different initialization, different optimizers and different
hyperparameters including m1, m2 and m3 in Eq. (1). As such, different ensemble members are expected to
converge at different local minima, yet without the loss of recognition performance.

To corroborate it, we visualize the distribution of the angular distance between each pair of ensemble
members given each face image as shown in Figure A.1. We empirically find that the mode of the empirical
distribution (⇠ 16 degrees instead of zero) indicates features of different ensemble members are not trivially
similar. Their diversity achieved by random initialization, optimizer and hyperparameter tweaking gives rise to
the empirical improvement of an ensemble over a single model, as shown in Table 1 in the main text.

B. Derivation of Bayesian Ensemble Averaging (BEA)

This section shows how Eq. (5)(6)(7) in the main text are derived. Note that the ensemble posterior for
q(z|x) to emulate is

p(z|f✓1 , ..., f✓n ,x) := p(z|f✓1(x), ..., f✓n(x)) (A.1)

=
p(f✓1(x), ..., f✓n(x)|z) · p(z)

p(f✓1(x), ..., f✓n(x))
(A.2)

∗Equal contribution.



Assume that f✓1(x), ..., f✓n(x) are conditionally independent given the latent z. Then, Eq. (A.2) reads

p(f✓1(x), ..., f✓n�1(x)|z) · p(f✓n(x)|z) · p(z)

p(f✓1(x), ..., f✓n(x))
(A.3)

=
p(f✓1(x), ..., f✓n�1(x)) · p(f✓n(x))

p(f✓1(x), ..., f✓n(x))
·
p(f✓1(x), ..., f✓n�1(x)|z) · p(f✓n(x)|z) · p(z)

p(f✓1(x), ..., f✓n�1(x)) · p(f✓n(x))
(A.4)

/
p(f✓1(x), ..., f✓n�1(x)|z) · p(f✓n(x)|z)p(z)

p(f✓1(x), ..., f✓n�1(x)) · p(f✓n(x))
(A.5)

=
p(f✓1(x), ..., f✓n�1(x), z) · p(f✓n(x), z)

p(f✓1(x), ..., f✓n�1(x)) · p(f✓n(x)) · p(z)
(A.6)

=
p(f✓1(x), ..., f✓n�1(x), z)

p(f✓1(x), ..., f✓n�1(x))
·

p(f✓n(x), z)

p(f✓n(x)) · p(z)
(A.7)

= p(z|f✓1(x), ..., f✓n�1(x)) ·
p(z|f✓n(x))

p(z)
(A.8)

=: p(z|f✓1 , ..., f✓n�1 ,x) ·
p(z|f✓n(x))

p(z)
(A.9)

/ p(z|f✓1 , ..., f✓n�1 ,x) · p(z|f✓n(x)) (A.10)

Note that Eq. (A.10) is obtained by assuming the prior p(z) is a uniform distribution over the hypersphere of
radius r, which is a constant (i.e. the inverse of the hypersphere’s surface) that is independent from z. This
assumption is reasonable, because before seeing any samples f✓i(x) (i = 1, ..., n), the best guess of z is the
uniform distribution over a finite support. Also note that our model operates over the hypersphere (a finite
support) rather than Euclidean space (an infinite support). Hence, the derivation can proceed. Therefore, we
obtain Eq. (5) in the main text. Applying this recursive equation for n times, we have

p(z|f✓1 , ..., f✓n ,x) /
nY

i=1

p(z|f✓i(x)) (A.11)

Also note that p(z|f✓i(x)) = r-vMF(z;µi,i). Then,
nY

i=1

p(z|f✓i(x)) =
nY

i=1
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(A.14)

We recognize Eq. (A.14) as an r-vMF distribution (up to a normalization constant) with the mean
Pn

i=1 iµi

k
Pn

i=1 iµik2

and the concentration value k
Pn

i=1 iµik2. This yields Eq. (5)(6)(7) in the main text.

C. Proof of Lemma 1

Lemma 1. For any µ 2 Sd�1 and  > 0, the differential entropy of r-vMF(µ,) has an analytic form:
�� (d2 � 1) log + log Id/2�1() +

d
2 log 2⇡. And it is a monotonically decreasing function of  in (0,+1).

Proof. According to the definition of differential entropy, the differential entropy of p(z) = r-vMF(z;µ,) can
be written as

H[p] = �

Z

rSd�1

p(z) log p(z)dz

= �

Z

rSd�1

h
r
µTz + logCd()� d log r

i
p(z)dz

= �


r
µTE[z]� logCd() + d log r

= ��

✓
d

2
� 1

◆
log + log Id/2�1() +

d

2
log 2⇡

(A.15)



Note that H[p] is not dependent on the mean direction µ but is a univariate function of , i.e. H[p]() for
 > 0. Taking derivative wrt  yields

@H[p]()

@
=

✓
�1�

d� 2

2

◆
+

1

Id/2�1()

@Id/2�1()

@
(A.16)

For the second term, we exploit the recurrence between the derivative and the Bessel function itself. Specifically,
for any ⌫ > 0,  > 0, we have the recurrence

@I⌫()

@
=

⌫


I⌫() + I⌫+1() (A.17)

By virtue of the recurrence, Eq. (A.16) becomes

@H[p]()

@
=

Id/2()

Id/2�1()
� 1 (A.18)

Soni [24] showed that I⌫() > I⌫+1() for all ⌫ > �
1
2 and  > 0. Taking ⌫ = d/2� 1 completes the proof.

D. Proof of Proposition 3.2

Proposition 3.2 For any x 2 X , suppose the first-order moment of the conditional p(µ�⇤(x)|DX ,x) exists
and that the conditional p('⇤

|�⇤,DX ) is a point mass, i.e., p('⇤
|�⇤,DX ) = �('⇤

� '⇤
0) for some '⇤

0. Then, in
the limit of infinite ensemble members, the aleatoric uncertainty of x, A(x) := Ep(�⇤,'⇤|DX ) [H [p(z|x,�⇤,'⇤)]],
is a monotonically decreasing function of the confidence measure ̄(1)

x , where

̄(1)
x := lim

n!1

k1µ1 + ...+ nµnk2

n
/ '⇤

0
(x) (A.19)

Proof. Note that Eq. (A.19) can be written as

̄(1)
x = kE[µ|x,DX ]k2

=
��Ep(�⇤,'⇤|DX )['⇤(x)µ�⇤(x)|x]

��
2

=
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Z
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(A.20)

Note that for any x 2 X , the first-order moment of the conditional p(µ�⇤(x)|DX ,x) exists. Then by definition,
it can be written as

E[µ�⇤(x)|DX ,x] =

Z
µ�⇤(x)p(�⇤

|DX )d�⇤ (A.21)

Due to its existence, its norm is finite, i.e.,

0 <

����
Z

µ�⇤(x)p(�⇤
|DX )d�⇤

����
2

= C < 1 (A.22)

Hence, '⇤
0
(x) = ̄(1)

x /C. On the other hand, according to Lemma 1, the aleatoric uncertainty A(x) can be
written as

Ep(�⇤,'⇤|DX ) [H [p(z|x,�⇤,'⇤)]] = Ep(�⇤,'⇤|DX )


�'⇤(x)� (

d

2
� 1) log '⇤(x) + log Id/2�1('⇤) +

d

2
log 2⇡

�
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0
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d

2
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0
(x)) +

d

2
log 2⇡

(A.23)

Then, using the chain rule, we have
@A

@̄(1)
x

=
@A

@'⇤
0

·
@'⇤

0

@̄(1)
x

=
1

C
·

@A

@'⇤
0

< 0. (A.24)

This concludes the proof.



Table A.1. Space occupancy (#Params) and computational complexity (MACs) for the setting: ResNet12-KD-5ResNet34.
'(·) is instantiated by [CONV(256)-ReLU-BN](⇥3)-AvgPool-[FC-ReLU](⇥2)-FC-exp.

Model [S]: ResNet12 [T]: 5 ResNet34 '(·)
#Params 40 MB 5⇥ 90 MB 2.5 MB

MACs 298.884 M 5⇥ 971.072 M 16.003 M

Table A.2. Space occupancy (#Params) and computational complexity (MACs) for the setting: MobileFaceNet-KD-
5ResNet34. '(·) is instantiated by [CONV(128)-ReLU-BN](⇥3)-AvgPool-[FC-ReLU](⇥2)-FC-exp.

Model [S]: MobileFaceNet [T]: 5 ResNet34 '(·)
#Params 4.8 MB 5⇥ 90 MB 0.6 MB

MACs 230.334 M 5⇥ 971.072 M 4.004 M

E. The Monte Carlo Method for Estimating Uncertainty

Note that the aleatoric uncertainty of a face image x, A(x) := Ep(�⇤,'⇤|DX ) [H [p(z|x,�⇤,'⇤)]], requires
estimating the first order moment of the entropy. We approximate it using the ensemble mean, i.e.,

A(x) ⇡
1

n

nX

i=1

H

h
p
�
z|x,�⇤

(i),'
⇤
(i)

�i
(A.25)

where {�⇤
(i),'

⇤
(i)} are the learnable parameters of the ith ensemble member (i = 1, ..., n). To approximate the

entropy H

h
p
�
z|x,�⇤

(i),'
⇤
(i)

�i
, we draw m Monte-Carlo samples∗ from p

�
z|x,�⇤

(i),'
⇤
(i)

�
:

z(1), ..., z(m) iid
⇠ p

�
z|x,�⇤

(i),'
⇤
(i)

�
(A.26)

Then, the entropy of the ith ensemble member can be estimated by the following finite sum

H

h
p
�
z|x,�⇤

(i),'
⇤
(i)

�i
⇡ �

mX

j=1

log p
�
z(j)

|x,�⇤
(i),'

⇤
(i)

�
(A.27)

Therefore,

A(x) ⇡ �
1

n

nX

i=1

mX

j=1

log p
�
z(j)

|x,�⇤
(i),'

⇤
(i)

�
(A.28)

In experiments, we set m = 100, 000. Similarly, we can estimate the total uncertainty using the similar
technique:

T (x) ⇡ �

mX

j=1

log

 
1

n

nX

i=1

p
�
z(j)

|x,�⇤
(i),'

⇤
(i)

�
!

(A.29)

F. Compression Rate

This section provides a detailed comparison of compression rate. In the two knowledge distillation settings
(ResNet12-KD-5ResNet34 and MobileFaceNet-KD-5ResNet34), we compare the models in term of #Params
and MACs. According to Table A.1, the compression rate is 1 � (40 + 2.5)/(5 ⇥ 90) = 90.56% in terms of
#Params and 1 � (298.884 + 16.003)/(5 ⇥ 971.072) = 93.51% in terms of MACs. In the second setting (cf.
Table A.2), the compression rate can be even higher: 1� (4.8 + 0.6)/(5⇥ 90) = 98.80% in terms of #Params
and 1� (230.334 + 4.004)/(5⇥ 971.072) = 95.17% in terms of MACs.

G. Ablation Study

Recall that we consider two experimental settings to demonstrate the effectiveness of our proposed framework:
(1) ResNet12 [11] is employed as the student to distill knowledge from ResNet34; (2) MobileFaceNet [4] is
employed as the student to distill knowledge from ResNet34.

∗Note that we are not using the results from Lemma 1 to calculate the entropy. Instead, we use the Monte-Carlo method
throughout in order to empirically validate the proposed theory.



For ablation studies in the first setting, we consider the following model variants: Single ResNet12, ResNet12-
KD-1ResNet34, ResNet12-KD-1ResNet34+SCF, ResNet12-KD-5ResNet34, ResNet12-KD-5ResNet34+SCF,
ResNet12-KD-1SCF(ResNet34). Descriptions of these model variants are given as follows:

• SCF(ResNet12): A state-of-the-art face uncertainty learning method built on ResNet12.
• Single ResNet12: The model is trained using ResNet12 as the backbone and the ArcFace loss as the loss

function. No knowledge distillation is employed.
• ResNet12-KD-1ResNet34: ResNet12 is trained to distill knowledge from one ResNet34. No BEA or

probabilistic treatment is employed.
• ResNet12-KD-1ResNet34 + SCF: After training ResNet12-KD-1ResNet34, an SCF module is trained

based on it.
• ResNet12-KD-5ResNet34: ResNet12 is trained to distill knowledge from five ResNet34’s. No BEA or

probabilistic treatment is employed.
• ResNet12-KD-5ResNet34 + SCF: After training ResNet12-KD-5ResNet34, an SCF module is trained

based on it.
• ResNet12-KD-1SCF(ResNet34): ResNet12 is trained to distill knowledge from one SCF that is built on

ResNet34.
Please refer to Table A.3 for detailed comparison among these models. The other setting is the same as the
first except for the change of the student network (from ResNet12 to MobileFaceNet).

We conduct ablation studies to demonstrate the effectiveness of each contributing components of our
approach. As shown in the main text, our approach BEA-KD outperforms all its model variants. Specifically,
for example, comparison between BEA-KD and ResNet12-KD-5ResNet34 suggests that the proposed Bayesian
averaging posterior acts as a good supervisory signal for uncertainty learning. Comparison with “ResNet12-KD-
5ResNet34 + SCF” further suggests that training an SCF built on the deterministic KD is inferior to ours:
distilling knowledge of feature embeddings is insufficient even when a probabilistic module SCF is built on it
for uncertainty learning. More interestingly, comparison with “ResNet12-KD-1SCF(ResNet34)” indicates that
distilling uncertainty from multiple teachers is essential to performance improvements. Note that our proposed
method can be seen as “ResNet12-KD-5SCF(ResNet34)”. Besides, comparison between “Single ResNet12” and
“ResNet12-KD-1ResNet34” showcases that KD from a single teacher is successful but with limited improvements
when compared with “ResNet12-KD-5ResNet34”.

H. State-of-The-Art Comparison

In Section 4.5 of the main text, we showed that our proposed approach outperforms the state-of-the-art
KD methods (TAKD [20], DGKD [23], MEAL [21], AE-KD [8], Hydra [25], CA-MKD [29], Eff-KD [9]). Our
method consistently outperforms others across all benchmarks. Note that these KD methods are designed for
the closed-set classification problem (for small C, typically) and operate in the (C � 1)-simplex space. Here we
provide a more detailed analysis of why the performance of these KD methods are inferior to ours. First, when
applied in large-scale face recognition where C is as large as hundreds of thousands (C = 617970 in our case),
these closed-set KD methods suffer from the curse of dimensionality : the softmax outputs of the teachers are
sparse, which come quite close to one-hot encoding, when face images are correctly classified (cf. Figure A.2).
Therefore, when the student distills knowledge from such teachers, it makes almost no difference from learning
with ground-truth labels (one-hot encoding), thereby resulting in ineffective knowledge distillation. Second,
as pointed out in prior literature [10, 12, 5], we further confirm that the teacher classifier’s softmax outputs
exhibit overconfidence: the predictive softmax outputs tend to be much larger at the predicted classes than at
the ground-truth labels when face images are misclassified (cf. Figure A.3). Distilling knowledge from such
overconfident outputs will make the KD process unreliable. Third, the feature embeddings given by these
models are deterministic, which cannot address the Feature Ambiguity Dilemma [22]. In contrast, our proposed
approach BEA-KD operates in the feature space whose dimensionality is typically much smaller than C (the
dimensionality of the label space) in million-scale face recognition. Moreover, the proposed approach BEA-KD
is designed for open-set recognition KD and can provide the confidence statistic (BEA statistic) that provably
correlates to aleartoric uncertainty in a theoretically-grounding manner. These reasons lead to the superiority
of our method.

I. Potential Negative Societal Impact

Face recognition has a broad impact on society, and is often deployed in environments of high uncertainty:
face images captured in the wild may display low quality, occlusion and poor light conditions. These adverse
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Figure A.2. The softmax outputs of the teacher network (ResNet34) when the input face images are correctly classified
(Label == Prediction). Each panel corresponds to the softmax output of one correctly-classified face image (uncurated).
We observe that the softmax outputs come quite close to one-hot encoding: the predictive scores get close to 1 (e.g.
0.9657 at 560680) with the rest of the scores dropping down to zeros. The experiment is carried out on WebFace12M
which contains 617970 identities in total.
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Figure A.3. The softmax outputs of the teacher network (ResNet34) when the input face images are misclassified. Each
panel corresponds to the softmax output of one misclassified face image (uncurated). We observe that the softmax
outputs display overconfidence: the predictive scores are more than hundreds of times larger than the scores at the
groundtruth labels, e.g. 0.2496 at 341758 (marked by red) versus 0.0016 at 447166 (marked by green arrows). The
experiment is carried out on WebFace12M which contains 617970 identities in total.

factors cause inaccuracies in face recognition systems. Our research provides a general framework for modelling
this uncertainty within the scope of open-set large-scale face recognition.

Face recognition requires great care and thought into its development and deployment. On one hand, it
presents significant risks: face recognition systems can produce biased results, such as higher misclassification
rate in subgroups due to disparities in the training data [3]; moreover, poorly controlled usage of face recognition
systems may compromise the privacy of individuals. Hence, face recognition systems should be managed within
a framework embracing principles of privacy and consent: for example, enforcing privacy protections on all
personally identifiable information, and requiring informed consent from individuals before they are included in
the database [26].

At the same time, face recognition has seen uses, e.g. in the medical domain, which improve patient
safety and quality of care: for example, for earlier diagnosis of medical and genetic conditions [16, 19, 15].
Hence, it is important to carefully weigh the relative costs and benefits of face recognition systems. Moving
forward, by contributing toward a stronger framework for uncertainty quantification in state-of-the-art face
recognition systems, we aim to strengthen existing efforts to develop algorithmic tools for mitigating bias in face
recognition [1]. For example, modelling uncertainty can be used in approaches for identifying under-represented
training examples [1]. Improving the accuracy of uncertainty modelling could help to identify subgroups of
high uncertainty, where the algorithm may be performing poorly, initiating investigation by human domain



experts, or the addition of training data used for improving performance on those subgroups.
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