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Abstract In this supplementary material, we provide our
dataset generation method in Section A, details about our
method, baselines, and implementation in Section B, details
about the experiments in Section C, and more quantitative
and qualitative experiment results, in Section D. For more
visualization of our generated dataset and grasping demon-
strations, please refer to the supplementary video.

A. Dataset Generation

In order to train our vision model and RL policy to be
universal and diverse in the table-top setting, we need a dex-
terous grasping dataset that provides numerous object in-
stances and holds diverse grasping labels. Moreover, each
grasp should correspond to a physically plausible tabletop
scene that is free of any penetration. We synthesized this
dataset using a similar method from [21].
Object Preperation Our object dataset is composed of
5519 object instances in 133 categories selected from
ShapeNet, [8], and [20]. Each object instance is canon-
icalized into a unit sphere, then re-scaled by each factor
in {0.06, 0.08, 0.1, 0.12, 0.15}. We decompose our meshes
into convex pieces using [22].
Grasp Generation Our table-top scene starts with a flat
plane which overlaps with the z = 0 plane of the world
reference frame. For each generation environment, we ran-
domly select an object from the pool of our training in-
stances, randomly rotate it, then let it fall onto the plane
from a high place. Next, we randomly initialize a dexterous
gripper in an area above the object, and let it face the object.
Then, the initial gripper pose is optimized into a plausible
grasp in a 6000-step optimization process, guided by an en-
ergy function. Finally, the object’s pose and the gripper’s
translation, rotation, and joint angles are saved for further
validation.

Figure 1. Our object dataset contains more than five thousand ob-
jects from various categories. These are the visualization of some
decomposed meshes.

Energy Function We base our energy function on [9],
and modified it to suit the table-top setting. It is composed
of the following terms. 1) Efc: A differentiable force clo-
sure estimator that encourages physical stability; 2) Edis:
Attraction energy to ensure contact; 3) Epen: Repulsion
energy to elliminate penetration; 4) Etpen: L1 energy that
keeps the gripper above the table; 5) Ejoints: Regulariza-
tion term to enforce joint limits; 6) Espen: Self penetration
energy inspired by [25]. The total energy is a linear combi-
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nation of the six terms.

E = Efc + wdisEdis + wpenEpen+

wtpenEtpen + wjointsEjoints + wspenEspen
(1)

Grasp Validation We filter our generated dataset by
physical stability and penetration depth. A grasp is con-
sidered physically stable if it can resist gravity in all 6 axis-
aligned directions in the IsaacGym simulator. Moreover,
we discard grasps that penetrate the object for more than
1mm. We ran 1000 generations for each object instance,
and harvested 1.12 million valid grasps in total. This table-
top dataset features stability and diversity, which empowers
our models to learn object-agnostic dexterous grasping in a
table-top scene.
Hand SDF Calculation The signed distance function
from the object point cloud to the hand mesh is needed
when calculating the penetration energy. However, this
forms a batched points-to-mesh distance calculation prob-
lem with different meshes, which is hard to compute. So
we add some tricks to speed up this calculation. First, we
use the collision mesh of the Shadowhand, which is com-
posed of articulation of simple primitives namely boxes and
capsules. Second, for a batch of object point clouds, we
consider each link of the hand respectively. Third, we use
forward kinematics to transform the object point clouds into
the link’s local reference frame. This operation turns the
problem into a points-to-mesh distance calculation with a
single mesh. The meshes for boxes are simple, so we use
Kaolin [11] to compute points-to-mesh distances. As for
capsules, the signed distance functions can be defined ana-
lytically. Finally, for each point, we take the minimal signed
distance across all links to get the signed distance from that
point to the complete hand collision mesh.

B. Method and Implementation Details
B.1. Goal Proposal Generation

B.1.1 Details about Our Method

GraspIPDF: The original IPDF [10] is a probabilistic
model over SO(3) that maps a pair of input and rotation,
i.e., (X , R), where the input X in IPDF is an image, to an
unnormalized joint log probability that indicates the likeli-
hood of this pair. Following this work, we implement our
GraspIPDF as a function f(X0, R) : RN×3×SO(3) → R.
We choose PointNet++ [13] to extract a global feature
from the input point cloud X0, and concatenate it with
rotation representation using the same positional encoding
in [10]. The concatenated feature is processed by an MLP
with layer sizes (256, 256, 256) to output f(X0, R) as
formulated in the paper.

GraspGlow: We use Glow [6] to implement normalizing
flow in this part. Glow implements its bijective transfor-

mation f : R3+K → R3+K as the composition of several
blocks, where each block consists of three parts: actnorm,
1× 1 convolution, and affine coupling layer.

Our implementation of actnorm and 1 × 1 convolution
is similar to the implementation in Glow, and the only dif-
ference is that our flow is used to transform a single vector
of R3+K instead of an image. Actnorm is a linear function
factnorm(x) = x/σθ+µθ where µθ, σθ ∈ R3+K are initial-
ized using the first batch’s mean and standard deviation and
then optimized with gradient descent like other parameters.
1× 1 convolution, which can be written as fconv(x) = Wx
where W is a (3+K)×(3+K) invertible matrix, is a linear
transformation used as a generalization of a permutation op-
eration. To constraint W to be invertible, W is parametrized
with LU decomposition W = PL(U+S) where P is a ran-
dom orthogonal matrix fixed in the training process, L is a
lower triangular matrix with ones on the diagonal, U is an
upper triangular matrix with zeros on the diagonal, and S is
a diagonal matrix whose diagonal elements are ensured to
be positive using exp. We modify the affine coupling layer
in a similar way to ProHMR [7], which can be described as
follows:

(x1, x2) = split(x)

(log s, b) = NN(x2, c)

s = exp (log s)

y1 = x1

y2 = s⊙ x2 + b

fcoup(x) = concat(y1, y2)

where x is the input of the transformation, c ∈ Rc is the
feature extracted by PointNet, x1 is the first half dimensions
of x and x2 is the last half dimensions.

In GraspGlow, we compose 21 blocks described above,
and the NNs in each block’s coupling layer has 2 residual
blocks containing MLPs with two layers, and the number
of hidden dimensions is 64. The activation function is
ReLU and we use batch normalization in MLPs and the
probability of dropout is 0.5. For more details, we refer the
reader to ProHMR [7]’s code as we use their implementa-
tion of conditional Glow.

ContactNet: The ContactNet has 2 independent Point-
Net [12] modules respectively for the canonicalized ob-
ject point cloud X̃ and the hand point cloud XH sampled
from the hand mesh constructed by the forward kinemat-
ics. The global feature from the hand is broadcast and con-
catenated to the per-point feature of the object point cloud.
Afterward, the feature goes through an MLP with layer
sizes (1024, 512, 512, 256, 256, 128, 128, 10) to output the
10-bin-discretized contact map per-point prediction. The
discretization is found to greatly boost the robustness of our
ContactNet.
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B.1.2 Details about Baselines

GraspTTA: GraspTTA [5] proposed a two-stage frame-
work to synthesize grasps for MANO [15]. They designed
a CVAE and a ContactNet to perform the tasks. During
training, the CVAE learns to reconstruct the grasp dataset,
and the ContactNet learns a mapping from the object and
hand point cloud to the object’s contact map. During
testing, in the first stage, the CVAE takes the object point
cloud’s feature as a condition, samples a latent vector from
the Gaussian distribution, and outputs the hand rotation,
translation, and parameters. They use these to reconstruct
the hand mesh. In the second stage, the ContactNet takes
the object and hand point cloud, and predicts a target
contact map on the objects. The consistency energy is
defined as the MSE between the actual contact map and
the target contact map predicted by the contact net. Using
this energy, the hand is optimized toward the target in a
test-time adaptation process. Note that in their work, the
target contact map is recalculated in every optimization
step. We also use test-time adaptation in our pipeline, but
only calculate the target contact map in the first iteration to
save time.

DDG: Deep Differentiable Grasp (DDG) [8] takes 5
depth images of the object and regresses the translation,
rotation, and joint angles of the ShadowHand. The learning
process is divided into two stages. In the first stage, only
a min-of-N loss is used for grasp pose regression. In the
second stage, other loss functions are added to encourage
contact, avoid penetration, and improve grasp quality. It is
important to note that, the original method doesn’t take the
table as input. They assume that all depth images are taken
in the object reference frame, and for each set of depth
images, 100 ground-truth grasps are required to define
the min-of-N regression loss. However, if we change this
setting and take the depth images in the table reference
frame, then only 15 ground-truth grasps are available for
each set of images on average. This is because when
we synthesized data for each object, the table planes are
randomly chosen in each generation process. So in this
experiment, we preserved their original settings without the
table. In evaluation, we don’t filter grasps that have large
table penetration depth for this method, which makes the
problem easier, and prove that our method still out-perform
theirs.

ReLie: ReLie [2] proposes a general way to perform
normalizing flow on Lie groups using Lie algebra, and in
SO(3) this equals to using the axis-angle representation
v = θn where θ is the angle of the rotation and that n
is a unit vector representing the axis of rotation. In their
implementation, the normalizing flow is performed on R3

and then the samples are transformed using tanh(·) and

multiplied by r, so that the length of the sampled vector
is less than r, and at last, the transformed samples are
converted to rotation using the exponential map. Note
that for surjectivity, they sacrifice invertibility and set r to
1.6π. In our experiment, we add those three dimensions
to GraspGlow so that the hand root rotation, translation,
and joint angles can be sampled jointly. The problem with
this method is that it suffers from discontinuity of the axis
angle representation and that the lack of bijectivity is also
harmful to the learning process.

ProHMR: ProHMR [7] proposes to use a 6D represen-
tation of SO(3), which is the first two columns of the
rotation matrix, to avoid discontinuity. In their method,
normalizing flow is performed on R6 and the samples are
projected to the manifold of SO(3) afterward. In our
experiment, we add those six dimensions to GraspGlow
similar to the baseline of ReLie, and to make the samples
close to the SO(3) manifold, we also add the orthogonal
loss following ProHMR. The problem with this method is
that the projection is an infinite-to-one mapping so that the
probability of a specific rotation is intractable, so theoret-
ically the normalizing flow can place infinite probability
to the SO(3) manifold without learning distribution on
SO(3) to get infinitely low NLL.

B.2. Goal-conditioned Dexterous Grasping Policy

B.2.1 Details about Our Method

As we introduced in Sec. 3.3.2, we use PPO to update the
teacher policy. We also adopt the technique in ILAD [23]
which jointly learns object geometric representation by
updating the PointNet using behavior cloning objective
during RL policy training. We further propose three im-
portant techniques including state canonicalization, object
curriculum learning, and joint training object classification
to update the PointNet in our network.

Reward Function: To ensure proper interaction between
the robot hand and the object and encourage the robot to
grasp the object according to the input grasping goal pose,
we define a novel goal-conditioned reward function. Since
we aim to solve the dexterous manipulation problem with
pure RL, the reward design is crucial. Note that all the ω∗∗
here are hyper-parameters.

The goal pose reward rgoal encourages the robot hand
to reach the input grasping goal pose. It measures the
weighted sum of distances between current robot joint an-
gles qj and goal joint angles qgj , and the distance between
hand root pose (tobjh , Robj

h ) in the object reference frame
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and the goal hand root pose (tgh, R
g
h) :

rgoal = −ωg,q

J∑
j=1

|qj − qgj | − ωg,t∥tobjh − tgh∥2 − ωg,RLrot

(2)
MRobj

h
and MRg

h
are matrices of the object relative hand

rotation and goal hand rotation. The Lrot here stands for the
axis angle from goal hand rotation to object relative hand
rotation, and is formulated as follows:

Lrot = acos(0.5(trace(MRobj
h

M⊤
Rg

h
)− 1)) (3)

The reaching reward rreach encourages the robot fingers
to reach the object. Here, xfinger and xobj denote the position
of each finger and object:

rreach = −ωr

∑
∥xfinger − xobj∥2 (4)

The lifting reward rlift encourages the robot hand to lift
the object when the fingers are close enough to the object
and the robot hand is considered to reach the target goal
grasp pose. f is a flag to judge whether the robot reaches
the lifting condition: f = Is(

∑J
j=1 ωg,j∥xobj

j − xobjg,j ∥2 <
λf1)+Is(

∑
∥xfinger − xobj∥2 < λf2)+Is(dobj > λ0). Here,

dobj = ∥xobj − xtarget∥2, where xobj and xtarget are object po-
sition and target position. az is the scaled force applied to
the hand root along the z-axis (ωl > 0).

rlift =

{
ωl ∗ (1 + az) if f = 3

0 otherwise
(5)

The moving reward rmove encourages the object to reach
the target and it will give a bonus term when the object is
lifted very close to the target:

rmove =

{
−ωmdobj +

1
1+ωbdobj

if dobj < λ0

−ωmdobj otherwise
(6)

Finally, we add each component and formulate our reward
function as follows:

r = rgoal + rreach + rlift + rmove (7)

Details of Object Curriculum Learning: For OCL
(Object Curriculum Learning) experiments in Sec. 4.3 in
the main paper, here is the detail of the curriculum.

For 1-stage OCL we randomly choose three different cat-
egories’ objects and do three experiments. Each time first
we train on one object and then train on all the categories.

For 2-stage OCL we randomly choose three categories
and do three experiments. Each time first we train on one

object from each category, then train on the category where
the object is from, and last train on all the categories.

For 3-stage OCL, we do two experiments. The 3
representative categories we use in the first experiment are
(toy car, bottle, and camera). The 3 representative cate-
gories we use in the second experiment are the (light bulb,
cereal box, and toy airplane). We first train on one object,
then train on the category of the object, then train on 3
representative categories, and last train on all the categories.

Network Architecture: The MLP in teacher policy πE
and student policy πS consists of 4 hidden layers (1024,
1024, 512, 512). The network structure of the PointNet in
both the πE and πS is (1024, 512, 64). We use the exponen-
tial linear unit (ELU) [1] as the activation function.

B.2.2 Details about Baselines

MP (Motion Planning) We use cross-entropy method
(CEM) [17] for motion planning given target hand joint
positions jg computed from the target goal hand grasp
label g using forward kinematics. The goal is to find
a robot hand action sequence a1, ..., aK which gen-
erates a robot hand joint position sequence jr0 , ..., j

r
K

and the last robot hand joint positions jrK reaches jg .
Followed by [23], the objective of the motion planning is
mina1,...aK

∥jrK−jg∥2+λ∥x1obj−xK
obj∥2, where x1obj and xKobj

are object poses at time step 1 and K. This objective func-
tion encourages the robot hand to reach the goal hand grasp
label as well as prevents the object from moving during the
process. We use model predictive control (MPC) to execute
the planned trajectories sampled from CEM process until
the objective is below a threshold δ . Once the process ends,
we lift the robot’s hand to see whether the object falls down.

PPO PPO [18] is a popular model-free on-policy RL
method. We use PPO together with our designed goal-
conditioned reward function as our RL baseline.

DAPG Demo Augmented Policy Gradient (DAPG) [14]
is a popular imitation learning (IL) method that leverages
expert demonstrations to reduce sample complexity. Fol-
lowed by ILAD [23], we use motion planning to generate
demonstrations from our goal grasp label dataset. We
use our designed goal-conditioned reward function in this
method.

ILAD ILAD [23] is an imitation learning method that
improves the generalizability of DAPG. ILAD proposes
a novel imitation learning objective on top of DAPG and
it jointly learns the geometric representation of the object
using behavior cloning from the generated demonstrations
during policy learning. For this method, we use the same
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Parameters Description
q ∈ R18 joint positions
q̇ ∈ R18 joint velocities
τdof ∈ R24 dof force
xfinger ∈ R3×5 fingertip position
αfinger ∈ R4×5 fingertip orientation
ẋfinger ∈ R3×5 fingertip linear velocities
ωfinger ∈ R3×5 fingertip angular velocities
Ffinger ∈ R3×5 fingertip force
τfinger ∈ R3×5 fingertip torque
t ∈ R3 hand root global transition
R ∈ R3×3 hand root global orientation
a ∈ R24 action

Table 1. Robot state definition.

generated demonstrations as in DAPG and use our designed
goal-conditioned reward function.

IBS-Grasp IBS-Grasp [19] propose an effective repre-
sentation of the grasping state called Interaction Bisector
Surface (IBS) characterizing the spatial interaction between
the robot hand and the object. The IBS representation,
together with a novel vector-based reward and an effective
training strategy, facilitates learning a strong control model
of dexterous grasping with good sample efficiency and
cross-category generalizability. It uses SAC [4]to train the
policy. Note that we evaluate the baseline using the official
code which uses the Pybullet simulator because it’s hard
to do the proposed fast IBS approximation in Isaac gym.
Additionally, it cannot train under the goal-conditioned
setting using the proposed reward function.

C. Experiment Details

C.1. Environment Setup

State Definition The full state of the teacher policy
SE = (srt , s

o
t , X

O, g). The full state of the student policy
SS = (srt , Xt, g). The robot state sr is detailed in Tab. 1
and the object oracle state so includes the object pose, linear
velocity, and angular velocity. For the pre-sampled object
point cloud XO, we sample 2048 points from the object
mesh. For the scene point cloud XS , we only sample 1024
points from the object and the hand to speed up the training.

Action Space The action space is the motor command of 24
actuators on the robotic hand. The first 6 motors control the
global position and orientation of the robotic hand and the
rest 18 motors control the fingers of the hand. We normal-
ize the action range to (-1,1) based on actuator specification.

Figure 2. Camera positions

Camera Setup We placed five RGBD cameras, four
around the table and one above the table, as shown in Fig.2.
The origin of the system is the center of the table. The posi-
tions of the five cameras are: ([0.5, 0, 0.05], [-0.5, 0, 0.05],
[0, 0.5, 0.05], [0, -0.05, 0.05], [0, 0, 0.55]) and all their
focus point is [0, 0, 0.05].

C.2. Training Details

(1) For the goal proposal generation part, we use Adam
optimizer to train GraspIPDF, with a learning rate of 10−3

and a batch size of 16. The loss Curve converges in 24
hours. In the training process of GraspGlow, we use Adam
as our optimizer and the learning rate is 10−3. The exper-
iment is done on an NVIDIA RTX A5000, and the batch
size is set to 64 in the first stage and 32 in the second stage
with 8 samples for each object. The training process con-
sists of 160k iterations in the first stage and 8k iterations in
the second stage, and it needs one day in total. ContactNet
also uses Adam, with a learning rate of 10−3 and a batch
size of 128, and the normalization factor β is set to 60. This
module needs 8 hours of training. The hyperparameters for
end-to-end training and test-time adaptation are in Tab. 2.

(2) For the goal-conditioned dexterous grasping policy
part, we use PPO [18] to learn πE and then distill to πS us-
ing DAgger [16]. Since some of the object meshes in the
dataset are too large for dexterous grasping, we filter out
some large-scale object instances. In the end, we obtain a
train set of 3200 object instances and a test set of 241 ob-
ject instances for the grasping execution experiments. The
hyperparameters for the experiments are in Tab. 3.

C.3. Metric Details

C.3.1 Metrics for Goal Proposal Generation

For the goal proposal generation part, we introduce seven
metrics to evaluate grasp quality and two metrics to
measure the diversity of our generated results.

Mean Q1 Q1 [3] is defined as the minimal wrench needed
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Hyperparameter Value
λcmap 0.02
λpen 500
λtpen 50
λspen 10
λTTA
cmap 0.07

λTTA
pen 10000

λTTA
tpen 1000

λTTA
spen 10

step size 0.001

Table 2. Hyperparameters for end-to-end training (upper half)
and test-time adaptation (lower half).

Hyperparameter Value
Num. envs (Isaac Gym) 1024
Env spacing (Isaac Gym) 1.5
Num. rollout steps per policy update 8
Num. batches per agent 4
Num. learning epochs 5
Episode length 200
Discount factor 0.96
GAE parameter 0.95
Entropy coeff. 0.0
PPO clip range 0.2
Learning rate 0.0003
Value loss coeff. 1.0
Max gradient norm 1.0
Initial noise std. 0.8
Desired KL 0.16
Clip observations 5.0
Clip actions 1.0
ωg,q 0.1
ωg,t 0.6
ωg,R 0.1
ωr 0.5
ωl 0.1
ωm 2
ωb 10

Table 3. Hyperparameters for grasping policy.

to make a grasp unstable. This metric is only well defined
when the grasp has exact contact and doesn’t penetrate the
object, which is impossible for vision-based methods. So
we relaxed the contact distance to 1cm. Moreover, if a
grasp penetrates the table for more than 1cm, or has an ob-
ject penetration depth larger than 5mm, then this grasp will
be considered invalid, so its Q1 will be manually set to zero.

Object Penetration Depth We define object penetration
depth as the maximal penetration from the object’s point

cloud to the hand mesh. This is calculated using the tricks
we introduced in Sec. A.

Rotation Standard Deviation This metric evalu-
ates the standard deviation of rotation by first cal-
culating the chordal L2 mean of rotation samples
(argmin

R

∑n
i=1(||R − Ri||2F ), and then calculate the

standard deviation between the rotation samples and the
mean. This metric is used to show the diversity of rotation
samples from GraspIPDF.

Translation and Joint Angles Standard Deviation
(conditional) These two metrics evaluate the standard
deviations of translation and joint angles, given a sampled
rotation from GraspIPDF, and are used to show the diversity
of translation and joint angles in the grasp samples from
GraspGlow.

Keypoint Standard Deviation This metric evaluates the
average standard deviation of 15 joint (keypoint) positions
of the robotic hand. This metric is used to show the
diversity of our grasp proposals generated by the whole
grasp proposal generation pipeline.

Log-likelihood We evaluate the log-likelihood of the
ground truth grasping rotation, translation, and joint angles
predicted by the model, and this metric is used to show
how well the model fits the ground truth distribution.
Note that for our model, we calculate p(R, t, θ|X) as
p(R|X) · p(t, θ|R−1X).

C.3.2 Metrics for Goal-conditioned Grasp Execution

For the goal-conditioned dexterous grasping policy part, we
introduce metrics to measure the success rate of grasping,
as well as how strictly our policy follows the specified
grasping goal.

Simulation Success Rate We define the success rate as
the primary measure of the grasping policy. The target
position of the object is 0.3m above its initial position.
The task is considered successful if the position difference
between the object and the target is smaller than 0.05m at
the final step of one sequence.

MPE (cm) This metric is used to measure the mean joint
position error between the joint position jr of the exact
grasping pose and the joint angels jg computed from the
input goal hand grasp label g using forward kinematics. J
is the number of joints. Note we only calculate the MPE for
the success grasp.
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Method goal-conditioned non-goal-conditioned
Train Test Train Test

unseen obj
seen cat unseen cat

unseen obj
seen cat unseen cat

succ↑ MPE (cm)↓ succ↑ MPE (cm)↓ succ↑ MPE (cm)↓ succ↑ succ↑ succ↑
MP 0.12 1.2 0.02 1.8 0.02 1.8 / / /
PPO [18] 0.14 4.4 0.11 4.9 0.09 5.8 0.24 0.21 0.17
DAPG [14] 0.13 8.0 0.13 7.4 0.11 9.1 0.21 0.15 0.10
ILAD [23] 0.25 5.1 0.22 5.3 0.20 5.6 0.32 0.26 0.23
IBS-Grasp [19] / / / / / / 0.57 0.54 0.54
Ours (teacher) 0.74 3.5 0.71 3.9 0.67 4.5 0.79 0.74 0.71
Ours (student) 0.68 3.8 0.64 4.3 0.60 4.7 0.74 0.69 0.65

Table 4. Results on dexterous grasping policy. We use bold to indicate the best metric and underline to indicate the second-best metric.
Note that for MP (Motion planning), “train” means optimizing on our synthetic ground truth grasp dataset and “test” means optimizing on
the predicted grasp from our vision pipeline.

Method Log-likelihood
ReLie [2] -1.540
ProHMR [7] -1.710
ours (R + GL) 10.908

Table 5. Comparison on Log-likelihood of ground truth grasps.
R: GraspIPDF, GL: GraspGlow. Note that the outputted probabil-
ity of flow in baselines on SO(3) is unnormalized and that we
generate uniform grids using the method described in [24] and ap-
proximate the normalizing constant similar to IPDF [10].

empe =
1

J

∑
∥jr − jg∥2 (8)

D. Additional Results and Analysis
This section contains extended results of the experiment

depicted in Sec. 4.

D.1. Goal-conditioned Dexterous Grasping Policy
Results

Goal-conditioned vs. Non-Goal-conditioned We also
conducted experiments in a non-goal-conditioned setting,
which is the task of grasping objects alone. We compare
our results with baselines described in Sec. B.2.2. We add
MP and IBS-Grasp only in supplementary because MP
cannot perform non-goal-conditioned tasks and IBS-Grasp
does not have a goal-conditioned setting. To perform
non-goal-conditioned tasks using our method, we simply
remove the goal input and goal reward in RL training.
The results are shown in Tab. 4. In non-goal-conditioned
settings, our teacher policy has the highest success rate
across training and all testing data sets.

Figure 3. Diverse grasp proposals. Here we show the diver-
sity of our grasping pose samples. On the same row, the objects
are the same, and in the same picture, the hand root rotation is
also the same. It can be shown that both the rotation samples
from GraspIPDF and the translation and joint angles samples from
GraspGlow have high diversity.

Analysis of Quantitative Grasping Results The metric
MPE in Tab. 4 measures the deviation between each
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method’s interaction ending grasp and input goal grasp,
as defined in Sec. C.3. The results show that except for
the motion planning, our method has the lowest MPE
among all the RL-based methods. Though the MPE of
motion planning is the lowest, it has the lowest success
rate, so it is unreliable. Especially, since our generated
grasping proposal on unseen object categories is noisy,
simply motion planning to the goal position cannot grasp
the object firmly. The gaps between hand and object in
generated data lead to the minimization of the MPE of
MP but this kind of low MPE is helpless since it cannot
seam the gap. On the contrary, our method can modify the
generated noisy grasp goal and make the grasp possible.

Additional Qualitative Grasping Results We provide a
qualitative demonstration of the diverse grasp proposals in
Fig. 3. Comparing the two images of each row, one can see
the diverse rotation predictions of GraspIPDF. The different
hands in each image demonstrate the diverse translation and
articulation predictions of GraspGlow. We also provide ad-
ditional qualitative grasping results in Fig. 4. The left part
of the figure is the visualization of the goal hand-grasping
pose. For each row, the right part is the generated grasp-
ing sequence using the left part as the grasping goal, and
we select four representative stages as pictures. From top
to bottom, the four featured objects are a bottle, a camera,
a toy dog, and a headphone. All the objects here are in the
test data set, and the grasping goals are selected from our
generated grasping proposals.
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Figure 4. Qualitative Grasping Results. The left side includes objects and corresponding grasping poses generated using our method,
and the right side is the policy-generated grasping sequence using the left corresponding part as the grasping goal. Object categories from
top to bottom: bottle, camera, toy dog, and a headphone.
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