
Supplement Materials for Unsupervised 3D Shape Reconstruction by Part
Retrieval and Assembly

Xianghao Xu1, Paul Guerrero2, Matthew Fisher2, Siddhartha Chaudhuri2, Daniel Ritchie1

1Brown University (USA), 2Adobe Research (UK, USA, India)
{xianghao xu, daniel ritchie}@brown.edu, {guerrero, matfishe, sidch}@adobe.com

1. Additional Implementation Details

In this section we provide additional details for our
method and experiments. The code of this paper will
be available at https://github.com/xxh43/
PartRetrievalAndAssembly.

Method Details Please see Algorithms 1, 2 and 7 for
pseudo-code of Phase I (Part Optimization), Phase II (Part
Shift) and Phase III (Part Borrowing), respectively. For
Phase II, we provide additional pseudo-code for helper
functions Swap() (Algo. 3), NNSegment() (Algo. 4),
Filter() (Algo. 5) and FathestConnectedComponent()
(Algo. 6). Intuitively, these helper functions perform the
following operations: Firstly, target to optimized parts dis-
tance matrix Q is computed, with rows(axis 0) represent
points in target, and columns(axis 1) represent parts. Then
in Swap(), the minimum distance matrix Qmin is computed
by taking the minimum value of each row of Q. The region
in the target T that is least covered by any of the parts is ex-
tracted as T−. Then for each part Di ∈ D, we compute the
distance matrix Qs without the effect of Di, and set the val-
ues of region T− in Qs to zero. The new minimum distance
matrix after swap is computed as Qs

min. The part Ds that
leads to the minimum value of avg(Qs

min) will be replaced
by T−. Then in NNSegment(), the target point cloud T
is segmented into a set of segments where Si consists of all
points from T which are closer to Di than to any other de-
coded part. Then in Filter(), segment Si is updated with
discarding a small amount of points that are already well
covered. Finally in FarthestConnectedComponent(),
the self connectivity matrix Wadj is computed by using
point to point connection when their distance is below a
threshold. This connectivity matrix Wadj is used to con-
struct the graph g, followed by the connected components
C are extracted from the graph g and the connected compo-
nent Ci which is farthest from any of the other segments is
selected.

Algorithm 1 Phase I Part Optimization
1: Input
2: Target shape T
3: Latent codes ei, i ∈ k
4: Translation vectors ti, i ∈ k
5: Rotation angles ri, i ∈ k
6: Pre-trained part decoder Decode

7: Output
8: Updated latent codes ei, i ∈ k
9: Updated translation vectors ti, i ∈ k

10: Updated rotation angles ri, i ∈ k

11: procedure Optimize
12: Di ← Decode(ei)
13: Di ← Pose(Di, ti, ri)
14: L ← Lrecon(D,T) + Loverlap(D)
15: ei ← ei +∇L(ei)
16: ti ← ti +∇L(ti)
17: ri ← ri +∇L(ri)
18: return ei, ti, ri
19: end procedure

Dataset Preprocessing Our method takes volumetric
point clouds as input. In our experiments, we use the
meshes provided in PartNet dataset to generate the corre-
sponding point clouds. In the dataset preprocessing, all tar-
get shapes are centered to the origin. All parts in the part
library are centered to the origin and rotated so the axes of
their minimum volume bounding boxes align with the world
axes. We then applied a hole filling method [1] to make
all target shape meshes and part meshes watertight and ap-
plied rejection sampling to generate the volumetric point
clouds for both target shapes and parts. For detecting sym-
metry planes for each shape, we iterate over several candi-
date planes that are perpendicular to xz plane that are cen-
tered at the object center. Then the points on one size of the
plane are reflected to the other size, if the reflected points
are overlap with the points on the other size, the symmetry
plane is found. The overlap is determined by a threshold

1

https://github.com/xxh43/PartRetrievalAndAssembly
https://github.com/xxh43/PartRetrievalAndAssembly


Algorithm 2 Phase II Part Shift
1: Input
2: Target shape T
3: Latent codes ei, i ∈ k
4: Translation vectors ti, i ∈ k
5: Rotation angles ri, i ∈ k
6: Pre-trained part decoder Decode
7: Pre-trained part encoder Encode

8: Output
9: Updated latent codes ei, i ∈ k

10: Updated translation vectors ti, i ∈ k
11: Updated rotation angles ri, i ∈ k

12:
13: procedure Shift
14: Di ← Decode(ei)
15: Di ← Pose(Di, ti, ri)
16: Q← cdist(T,D)
17: Di ← Swap(Di,D,T,Q)
18: Si ← NNSegment(Di,T,Q)
19: Si ← Filter(Si,T,Q)
20: Ci ← FarthestConnectedComponent(Si, S̸=i)
21: ti ← Center(Ci)
22: ri ← Rotation(Ci)
23: Ci ← Pose(Ci,−ti,−ri)
24: ei ← Encode(Ci)
25: return ei, ti, ri
26: end procedure
27:

Algorithm 3 Phase II helper Swap()
1:
2: procedure Swap(Di,D,T,Q)
3: Qmin ← min(Q, axis = 1).val
4: T− ← T[ind(topK(Qmin))]
5: dmin ← avg(Qmin)
6: Ds ← None
7: for Di ∈ D do
8: Qs ← (Q[:, 0 : i− 1] ∪Q[:, i+ 1 :])
9: Qs

min ← min(Qs, axis = 1).val
10: Qs

min[ind(T
−)]← 0

11: d← avg(Qs
min)

12: if d < dmin then
13: dmin ← d
14: Ds ← Di

15: end if
16: end for
17: Ds ← T−

18: return Di

19: end procedure

one for category with relative sparse point clouds such as

Algorithm 4 Phase II helper NNSegment()
1:
2: procedure NNSegment(Di,T, Q)
3: Si ← T[min(Q, axis = 1).ind == i]
4: return Si

5: end procedure
6:

Algorithm 5 Phase II helper Filter()
1:
2: procedure Filter(Si, Q)
3: Si ← Si[ind(topK(Q[:, i]))]
4: return Si

5: end procedure
6:

Algorithm 6 Phase II helper FarthestConnectedCompo-
nent()

1:
2: procedure FarthestConnectedComponent(Si, S̸=i)
3: W← cdist(Si,Si)
4: Wadj = W[W < τ ]
5: g ← Graph(Wadj)
6: C ← g.connected components
7: dmax ← 0
8: for C ∈ C do
9: d← avg(cdist(Center(C), S̸=i))

10: if d > dmax then
11: dmax ← d
12: Ci ← C
13: end if
14: end for
15: return Ci

16: end procedure
17:

Table and one for categories with relative dense point cloud
such as Faucet and Lamp.

Experiments For Phase I optimization, we use the Adam
optimizer [2] with learning rate 0.008. For NP, the model
that performs best on evaluation set during training is used
to evaluate both train and test performance.

Part VAE Architectures Please see Table 1 and Table 2
for architecture of the Part Encoder and Part Decoder.

2. Additional Ablation Experiments

We conducted several additional ablation studies on the
Faucet category to investigate more about our method.



Algorithm 7 Phase III Part Borrowing
1: Input
2: Target reconstruction errors: hi, i ∈ N
3: Target to Target distance matrix M
4: Output
5: Updated latent codes ei, i ∈ k
6: Updated translation vectors ti, i ∈ k
7: Updated rotation angles ri, i ∈ k

8: procedure Borrow
9: nb← −1

10: for j ∈ ind(botK(M[i, :])) do
11: if hi[j] ≤ ϵ then
12: nb← j
13: break
14: end if
15: end for
16: if nb ≥ 0 then
17: ei ← enb
18: ti ← tnb
19: ri ← rnb
20: else
21: ei ← rand()
22: ti ← rand()
23: ri ← rand()
24: end if
25: return ei, ti, ri
26: end procedure

Part Encoder

Conv1d (3, 32, 1)
Batchnorm1d

LeakyRelu
Conv1d (32, 64, 1)

Batchnorm1d
LeakyRelu

Conv1d (64, 64, 1)
Batchnorm1d

LeakyRelu
Conv1d (64, 64, 1)

Batchnorm1d
LeakyRelu
MaxPool

FC(64× 64)

Table 1. Detailed architecture of the Part Encoder

Part library size We investigate the influence of varying
the size of the input part library. We cluster all parts ac-
cording to the shape similarity, then we randomly choose
certain number of clusters combined as the part library for
our experiments. Please see Table 3 and Figure 1 for the
results. As you can see, with fewer parts available in the

Part Decoder

FC(64× 512)
Batchnorm1d

LeakyRelu
FC(512× 512)
Batchnorm1d

LeakyRelu
FC(512× 1024)

Batchnorm1d
LeakyRelu

FC(1024× 1024)
Batchnorm1d

LeakyRelu
FC(1024× (512 ∗ 3))

Reshape

Table 2. Detailed architecture of the Part Decoder

Method Train (SCD) ↓ Train (VCD) ↓ Test (SCD) ↓ Test (VCD) ↓

NP (107 parts) 0.668 0.394 0.623 0.353
Ours (107 parts) 0.382 0.201 0.437 0.225

NP (432 parts) 0.488 0.274 0.488 0.256
Ours (432 parts) 0.302 0.156 0.340 0.163

NP (789 parts) 0.326 0.171 0.370 0.174
Ours (789 parts) 0.256 0.135 0.288 0.134

Table 3. Part library size ablation (Faucet). Note: numbers are
multiplied by 100.

Figure 1. Part library size ablation (training target statistics).

part library, the performance of both our method and Neu-
ral Parts (NP) drops, but our method drops more gracefully
(slower) than Neural Parts (NP) does. We think this shows
our method can effectively take advantage of its awareness
of the available parts.

Retrieval candidate part number We investigate the in-
fluence of varying size of the set of the parts considered as
candidates for retrieval. In our main experiments, for all
methods, we iterate over the entire part library to find the



Method Train (SCD) ↓ Train (VCD) ↓ Test (SCD) ↓ Test (VCD) ↓

NP (100% of all parts) 0.326 0.171 0.370 0.174
Ours (5% of all parts) 0.271 0.142 0.337 0.162
Ours (25% of all parts) 0.261 0.137 0.297 0.143
Ours (100% of all parts) 0.256 0.135 0.288 0.134

Table 4. Retrieval part candidate number ablation (Faucet). Note:
numbers are multiplied by 100.

Figure 2. Retrieval part candidate number ablation (training target
statistics).

part that fits best to each segment in the target as the final
part retrieval. This is because for Neural Parts (NP) and
Brute Force (BF), there is no information to tell us which
subsets of all parts to focus as the retrieval candidate parts.
However, in our method, we have a part encoding latent
space and for each optimized part we have an optimized part
latent code. Our method can take advantage of this to just
iterate and retrieve a subset of parts that are in the vicinity of
the optimized part latent code in the latent space. We con-
ducted the experiments with iterating only the nearest 5%,
25% of the entire part library for the final retrieval. Please
see Table 4 and Figure 2 for the results. As you can see,
even with much smaller amount of part retrieval candidates,
our method still outperforms NP. This proves (1) the effec-
tiveness of our latent space and (2) the potential speed-up
advantage of our method when dealing with large input part
libraries.

Training target number We investigate the influence of
varying size of the set of input training target shapes on our
amortized inference procedure. Please see Table 5 and Fig-
ure 3 for the results. As you can see, the performance of
amortized inference does not drop much with fewer train-
ing target shapes.

3. Failure Cases
Figure 4 shows some failure patterns we identified for

our method: (1) Insufficient points sampled on thin regions
of the target shape; (2) Sub-optimal hyper-parameters, e.g.

Method Test (SCD) ↓ Test (VCD) ↓

NP (250 train shapes) 0.370 0.174
Ours (10 train shapes) 0.297 0.150
Ours (100 train shapes) 0.292 0.140
Ours (250 train shapes) 0.288 0.134

Table 5. Training target number ablation (Faucet). Note: numbers
are multiplied by 100.

Figure 3. Training target number ablation.

Targets

Ours

Figure 4. Failure Cases

the shape is not judged as a symmetrical shape so that the
symmetry constraint is not applied, and the connected com-
ponent selection threshold in Phase II is too large so that
disconnected geometry is the target is not successfully rep-
resented by different parts; (3) complex cluttered geometry
details are missed due to the limitation of the point cloud
representation (the small scale cluttered geometry details
are represented by several points during the optimization).

4. Model-based Inference

We also tried to use neural networks to perform fast in-
ference, but we found that it did not perform as well as the
amortized inference used in our method. We designed a Re-



Method Test (SCD) ↓ Test (VCD) ↓

NP 0.370 0.174
Model Infer 0.370 0.185
Ours 0.288 0.134

Table 6. Comparison results NP vs. Model Infer vs. Ours (Faucet).
Note: numbers are multiplied by 100.

trievalNet which takes in a target shape point cloud and out-
puts k part latent codes ei in the latent space, together with
an AssembleNet which takes in a target shape point cloud
and a part latent code ei and outputs a translation vector ti
and a rotation angle ri for part i. These networks are trained
to directly regress the latent code, translation vector and ro-
tation angle that we acquired from our direct optimization
on the training target shapes. Then inference is performed
on testing target shapes.

See Figure 5 for an overview of this inference mode; see
Table 6 for the reconstruction results on testing shapes from
the Faucet category. The model based inference results are
not as good as our amortized inference. We think the reason
might be: each part output slot of the RetrievalNet plays a
fixed role (for example, part i is always made to reconstruct
similar region on every different target shape.), so that the
direct regression of high dimensional vectors which are in-
dependently optimized (can play different roles) can be dif-
ficult. Thus, it cannot properly handle large structural dif-
ference across target shapes.

5. Additional experiment results
Please see Figure 6 and Figures 7 for additional JRD vs.

Ours qualitative comparison results. Please see Figure 8–
22 for additional NP vs. Ours qualitative comparison re-
sults. Please see Figures 23 and 24 for additional qualitative
cross-category reconstruction results.

References
[1] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust water-

tight manifold surface generation method for shapenet mod-
els. arXiv preprint arXiv:1802.01698, 2018. 1

[2] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In ICLR 2015, 2015. 2



Figure 5. Model based Inference Overview: RetrievalNet takes in a target point cloud T and output k part latent codes ei, i ∈ k in the
latent space. AssembleNet takes in a target shape point cloud T and a part latent code ei to output a translation vector ti and a rotation
angle ri for part i. The decoded parts are translated and rotated according to ti and ri. The same segmentation and retrieval operations as
our method are performed to generate the final output.

Targets

JRD

Ours

Figure 6. JRD vs. Ours on testing Chair shapes (1)



Targets

JRD

Ours

Figure 7. JRD vs. Ours on testing Chair shapes (2)

Targets

NP

Ours

Figure 8. NP vs. Ours on Faucet category (1)



Targets

NP

Ours

Figure 9. NP vs. Ours on Faucet category (2)

Targets

NP

Ours

Figure 10. NP vs. Ours on Faucet category (3)



Targets

NP

Ours

Figure 11. NP vs. Ours on Faucet category (4)

Targets

NP

Ours

Figure 12. NP vs. Ours on Faucet category (5)



Targets

NP

Ours

Figure 13. NP vs. Ours on Chair category (1)

Targets

NP

Ours

Figure 14. NP vs. Ours on Chair category (2)



Targets

NP

Ours

Figure 15. NP vs. Ours on Chair category (3)

Targets

NP

Ours

Figure 16. NP vs. Ours on Chair category (4)



Targets

NP

Ours

Figure 17. NP vs. Ours on Chair category (5)

Targets

NP

Ours

Figure 18. NP vs. Ours on Lamp category (1)



Targets

NP

Ours

Figure 19. NP vs. Ours on Lamp category (2)

Targets

NP

Ours

Figure 20. NP vs. Ours on Lamp category (3)



Targets

NP

Ours

Figure 21. NP vs. Ours on Lamp category (4)

Targets

NP

Ours

Figure 22. NP vs. Ours on Lamp category (5)



Targets

Ours

Figure 23. Faucet Parts to Chairs

Targets

Ours

Figure 24. Lamp Parts to Chairs


	. Additional Implementation Details
	. Additional Ablation Experiments
	. Failure Cases
	. Model-based Inference
	. Additional experiment results

