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1. Overview
This supplementary document is organized as follows:

• We present additional information and visualization of
the V2V4Real dataset in Sec. 2.

• Implementation details of the evaluated models are
covered in Sec. 3.

• More ablation studies are covered in Sec. 4.

• More qualitative 3D object detection results are shown
in Sec. 5.

• More qualitative Sim2Real domain adaptation results
are shown in Sec. 6

Figure 1. The LiDAR appearance for each object class in
V2V4Real.

2. Dataset Visualization
We demonstrate what each object class looks like in the

LiDAR data in Fig. 1. We show more visualizations of the
proposed V2V4Real dataset in Fig. 2. 3 different scenes are
presented: a cityroad, a highway, and another cityroad ex-
ample. For each figure, we demonstrate four images. Upper
left: the aggregated 3D LiDAR points; Upper right: the an-
notated HDMap; Bottom row: the front camera view of the
two vehicles, with the green and red LiDAR correspond-
ing to lower left and lower right images. The 3D bounding
boxes drawn on the images are projected from the labels
annotated in LiDAR frames using extrinsics and intrinsics.
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3. Implementation Details

We provide additional details on the implemented base-
line methods in our experiments.

3.1. Cooperative 3D Object Detection

PointPillars backbone. For all the experiments, we set
the PointPillars backbone [4] to have a voxel resolution of
0.4 meters on x and y direction. We set the maximum points
per voxel as 32 and the maximum voxel numbers as 32000.

Fusion models. We have implemented five differ-
ent fusion methods including F-Cooper [2], AttFuse [8],
V2VNet [6], V2X-ViT [5], and CoBEVT [7]. We mainly
follow the implementation and configurations from the orig-
inal authors, except for V2X-ViT, wherein we regard the
two vehicles as the same object type (i.e., vehicle) since
there is no infrastructure in V2V4Real.

Detection head. For 3D object detection, we apply
two channel-wise convolution 1 × 1 layers on top of the
fused feature maps to obtain two heads for box regression
and classification, respectively. The regression head yields
(x, y, z, w, l, h, θ), denoting the position x, y, z, size w, l,
and yaw angle θ of the predefined anchor boxes. The clas-
sification head outputs the confidence score of being an ob-
ject or background for each anchor box, respectively. We
employ the smoothed ℓ1 loss and a focal loss for regression
and classification heads.

3.2. Cooperative Tracking

The proposed cooperative tracking framework in our
benchmark follows the widely adopted tracking-by-
detection paradigm but differs from the existing object
tracking methods: the detection results are gained from
shared visual information instead of individuals.

Problem definition: Assume there are Nt bound-
ing boxes D(t) = {Di

t}
Nt
i=1 from our coopera-

tive detection algorithm at current frame t, where
Nt represent the number of cooperatively detected
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(a) A cityroad example

(b) A highway example

(b) A cityroad example

Figure 2. 3 different scenarios in V2V4Real. Left Up: The aggregated 3D LiDAR. Right Up: The annotated HDMap, where the stars
indicate the position of the two collection vehicles. Bottom Row: The front cameras of the two vehicles.
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There are Mt−1 previous associated trajectories
T (t − 1) = {T j

t−1}
Mt−1

j=1 at frame t − 1, where Mt−1

represent the number of previous trajectories and T j
t−1 =

(xj
t−1, y

j
t−1, z

j
t−1, θ

j
t−1, w

j
t−1, h

j
t−1, l

j
t−1, s

j
t−1, vx

j
t−1, vy

j
t−1,

vz
j
t−1). We aim to map each detected object Di

t to their
corresponding trajectory M j

t−1. The (x, y, z) corresponds
to the object center, and (w, h, l) represents object size in
point cloud space. θ is the heading angle of the object. s
is the detection confidence score, which depends on the
cooperative detection network. The additional variables
(vx, vy, vz) in trajectories represent the object velocity in
x, y, and z directions.

Detection results: The inputs of the tracking system are
the detected bounding boxes, which are obtained from the
cooperative 3D object detection task described in the previ-
ous section.

Trajectory prediction and association: With the de-
tected bounding boxes from the cooperative detection mod-
ule, the goal of object tracking is to find all valid matches
between detected bounding boxes D(t) and trajectory T (t−
1). A Kalman filter is applied to predict the trajectories
T (t − 1) of objects based on a constant velocity kinematic
vehicle model. These predicted spatial information of tra-
jectories combined with the information of detected objects
would be used to calculate the affinity matrix in the Hungar-
ian to determine whether currently detected objects in D(t)
can be matched to trajectories in T (t − 1). Specifically,
given a sequence of trajectories

T (t− 1) = {T j
t−1}

Mt−1

j=1 (1)

at frame t− 1, a constant velocity kinematic vehicle model
in the Kalman filter is used to predict the position of the
object in each trajectory in T (t− 1) as follows:

xj
t ,pred = xj

t−1 + vx
j
t−1 (2)

yjt ,pred = yjt−1 + vy
j
t−1 (3)

zjt ,pred = zjt−1 + vz
j
t−1 (4)

Therefore, the final predicted trajectory is
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After predicting the set of trajectories T (t)pred, the 3D
Intersection of Union(IoU) is used to compute the data
affinity matrix A ∈ RMt−1×Nt to determine the similarity
between predicted trajectories and detected bounding boxes
D(t), where each element Ai,j is the 3D IoU for the pre-
dicted trajectory i and the 3D bounding box j at frame t.

The affinity matrix will be solved by the Hungarian algo-
rithm, which considers the association as a bipartite match-
ing problem, to solve the association problem.

State update and trajectory management: After gain-
ing the predicted trajectories and association results from
the Hungarian algorithm, the state update is to make the
trajectory more accurate by considering the current detec-
tion results. The Kalman Filter is used to update the state
of the predicted trajectory by considering the current detec-
tion information and accounting for uncertainties from the
detection errors. Accordingly, we have:

Tm
t = KF (Tm

t , Dk
t ) (7)

,where Dk
t ∈ D(t) and Tm

t ∈ T (t) are the associated
pair obtained from Hungarian algorithm, k ∈ {1, 2, ..., Nt},
m ∈ {1, 2, ...,Mt}. The updated state of the correspond-
ing predicted trajectory Tm

t ∈ T (t) is a weighted average
between the related Dk

t ∈ D(t) and Tm
t ∈ T (t).

Trajectory management is organizing new and old trajec-
tories. When an object starts to appear at frame t, it could
either be a false positive due to the detector or it naturally
enters the field of view. Similarly, when an object starts to
disappear at frame t, it could either be a miss or it natu-
rally leaves the LiDAR range. Both scenarios are handled
by tracking objects in additional frames. Specifically, when
Dl

t is an unmatched object entering the field of view, we
will treat it as a new trajectory if Dl

t can be matched in the
next few frames to prevent adding false positive detection
as a new trajectory. When T p

t is an unmatched trajectory
leaving the field of view, we will treat it as a dead trajectory
if T p

t cannot be matched with any detected bounding boxes
in the next couple of frames to prevent removing the true
positive trajectory.

3.3. Domain Adaption

Feature-level domain discriminator: The feature-level
domain discriminator will take the fused features after
the fusion modules as input and classify whether the fea-
ture belongs to target domain (V2V4Real) or source do-
main (OPV2V). The discriminator consists of two convo-
lution layers with 3 × 3 kernel size, and the second convo-
lution will map the feature channel number to 1.

Objec-level domain discriminator: The object-level
domain clarifier will take the score map obtained from the
detection classification head as the input. It includes three
linear projection layers with ReLU activation functions.

Loss: Both discriminators employ binary cross-entropy
to compute the loss and use gradient reverse layer (GRL) [3]
to backpropagate the gradients.

4. Ablation Studies
Effects of Data Augmentation. Data augmentation has
been shown to be highly effective in single-vehicle per-



Method Sync (AP@IoU=0.5) Async (AP@IoU=0.5) AM
(MB)Overall 0-30m 30-50m 50-100m Overall 0-30m 30-50m 50-100m

No Fusion 28.7(-11.1) 50.0 22.9 4.9 28.7(-11.1) 50.0 22.9 4.9 0
Late Fusion 43.0(-12.0) 55.1 34.4 31.9 40.9(-9.3) 54.6 33.5 30.9 0.003
Early Fusion 48.2(-11.5) 64.3 33.2 34.0 41.0 (-11.1) 62.5 27.3 18.1 0.96
F-Cooper [1] 45.6(-15.1) 65.3 35.3 25.9 37.6(-16.0) 62.1 28.6 13.4 0.20
V2VNet [6] 49.0(-15.5) 69.2 35.0 30.6 41.5(-14.9) 65.5 32.4 13.7 0.20
AttFuse [8] 47.9(-16.8) 67.9 34.6 26.8 40.8(-16.9) 65.8 28.6 13.9 0.20
V2X-ViT [5] 48.9(-16.0) 66.0 38.1 30.0 41.6(-14.3) 62.8 32.9 17.5 0.20
CoBEVT [7] 51.1(-15.4) 69.3 40.0 32.4 44.9 (-13.7) 65.2 35.6 19.8 0.20

Table 1. Cooperative 3D object detection benchmark without data augmentation . The numbers in the bracket indicate the performance
drop compared to the same model with data augmentation.

ception tasks, such as 3D object detection using point-
clouds [4, 9]. In this work, we evaluate the impact of data
augmentation on cooperative perception by conducting an
ablation study that removes pointcloud rotation, flipping,
and scaling augmentations. Our evaluation is performed
on 3D object detection. As depicted in Table 1, all meth-
ods show a significant decrease in performance without data
augmentation, such as 15.6% for CoBEVT and 11.5% for
Early fusion. Additionally, the intermediate fusion methods
show more benefits from data augmentation, which is pos-
sibly due to their more complex models and requirement for
more data.

5. Detection Results

We demonstrate more qualitative results of the 3D de-
tection comparisons in Figs. 3 and 4 under the Sync set-
ting. As shown in the urban scene in Fig. 3, where traffic
is heavier and crowded vehicles are causing severe occlu-
sions, cooperative solutions yield significantly better detec-
tion results than No Fusion. Intermediate fusion methods
also generate more accurate detection than early or late fu-
sion within the medium radius (< 50 m). It is obvious
that among all the compared approaches, CoBEVT’s pre-
diction best aligns with the ground truth bounding boxes,
which is consistent with the numerical results provided in
the main paper. As for the highway scene in Fig. 4 where
vehicles drive at higher speed but less crowdedness, all the
cooperative methods can successfully predict the surround-
ing vehicles’ bounding boxes, with some approaches (V2X-
ViT, CoBEVT) slightly more accurate than others (V2VNet,
Late Fusion, Earl Fusion).

6. Domain Adaptation Results

Figs. 5 and 6 show the qualitative results of the coopera-
tive domain adaptation. It may be observed in the highway
scenario (Fig. 5) that all the models benefited from applying
domain adaptation strategies, with AttFuse and F-Cooper
gaining the most, observing from the huge performance dif-

ference between the detection results without and without
domain adaptation. In a more crowded intersection scene
(Fig. 6), we may see that F-Cooper, V2X-ViT, and CoBEVT
are top performers among the compared methods. However,
F-Cooper has been observed to produce more false posi-
tives while less so for V2X-ViT, after domain adaptation is
applied.



Scene 1 Scene 2

No Fusion

Early Fusion

Late Fusion

V2VNet [6]

V2X-ViT [5]

CoBEVT [7]

Figure 3. Qualitative results of cooperative 3d object detection in two urban scenarios. Green and red 3D bounding boxes represent
the groundtruth and prediction, respectively.



Scene 3 Scene 4

No Fusion

Early Fusion

Late Fusion

V2VNet [6]

V2X-ViT [5]

CoBEVT [7]

Figure 4. Qualitative results of cooperative 3d object detection in two highway scenarios. Green and red 3D bounding boxes represent
the groundtruth and prediction, respectively.



Without Domain Adaption With Domain Adaption

AttFuse [8]

V2VNet [6]

F-Cooper [1]

V2X-ViT [5]

CoBEVT [7]

Figure 5. Qualitative results of domain adaption in a highway scenario. Green and red 3D bounding boxes represent the groundtruth
and prediction, respectively.



Without Domain Adaption With Domain Adaption

AttFuse [8]

V2VNet [6]

F-Cooper [1]

V2X-ViT [5]

CoBEVT [7]

Figure 6. Qualitative results of domain adaption in an intersection scenario. Green and red 3D bounding boxes represent the
groundtruth and prediction, respectively.
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