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In this supplementary material, we provide more details
about our HazeWorld dataset in Appendix A. Then we show
network architecture details in Appendix B. In Appendix C,
we present more experiment settings, comparisons to state-
of-the-art (SOTA) methods, and ablation studies.

A. HazeWorld Dataset
Our HazeWorld dataset is a large-scale outdoor video

dehazing dataset, and more dataset statistics are shown
in Table 1. We select outdoor daytime videos from the
original datasets [3, 6, 17, 19, 27, 31]. The frame rate
and the resolution are mostly adjusted to keep each video
with no more than 100 frames and around 720p, re-
spectively. To obtain the transmission maps for synthe-
sizing hazy videos based on the atmospheric scattering
model, we use the geometric optimization-based robust
video depth estimation method [12] to generate tempo-
rally consistent scale-less depth maps and manually convert
them to the range of [0m, 150m]. Following [1, 23], four
β ∈ {0.005, 0.01, 0.02, 0.03} are adopted, which is corre-
sponding to meteorological optical ranges of around 600m,
300m, 150m, and 100m, respectively. The example video
frames with different β are shown in Fig. 1.

B. Network Architecture
The multi-scale feature maps are extracted from the en-

coder (i.e., scales of 1/4, 1/8, 1/16, 1/32), which are then
performed channel size reduction to a lower dimension us-
ing linear layers, e.g., 64, for computational efficiency. Af-
terward, the feature maps with reduced channel size are fed
into the prior and scene decoder separately.

In the overall U-Net architecture, the space-time de-
formable attention blocks (STDA) are used in multiple
scene decoder layers. The input space-time flow Õr→i of
the first layer is initialized as zero, and it is refined gradu-
ally and trained in an end-to-end manner, which is similar
to the coarse-to-fine optical flow estimation [21]. Note that
the parameters in one STDA block are shared across multi-
range alignment for computing flow offsets and other oper-
ations such as attention. But we record separate space-time
flows Or→i for different ranges.

C. More Experimental Results
C.1. Settings

More implementation details. We use the AdamW opti-
mizer and the polynomial scheduler with a power of 1.0.
The learning rate is set as 2×10−4 with a warm-up start of
1,500 iterations. We use the pre-trained ConvNeXt-T [16]
on ImageNet as the encoder. MPG is used in feature map
scales of 1/16 and 1/32 for computational efficiency. We
empirically set the number of prior tokens N as the num-

ber of frames i for each timestep i. On HazeWorld, the
random crop and horizontal flip are adopted for data aug-
mentation. The batch size is eight, and the patch size of
input video frames is 256×256. During training, five hazy
frames are used as inputs. The same training settings, e.g.,
data augmentation and training iterations, are used for all
compared methods. We use public implementations and re-
train these models on our dataset to report their results. On
REVIDE [13], we use heavier data augmentation, e.g., re-
sizing with random scales, since REVIDE only contains 42
training videos, following CG-IDN [29]. The patch size of
input video frames is 384×384 as standard [9, 29].

Testing settings. We take the full videos as input for our
method to restore the haze-free video frames.

C.2. More comparisons with SOTA methods

More quantitative comparison. Our method outperforms
SOTA image dehazing, video dehazing, and video restora-
tion methods on HazeWorld (see Table. 1 in the paper).
Moreover, we compare our method against two SOTA im-
age dehazing methods (i.e., AECR [28] and Dehamer [7])
with the video alignment method BasicVSR++ [2]. Their
PSNR/SSIM results are 23.47/0.9111 and 23.89/0.9220,
respectively, which indicate that our method outperforms
SOTA image dehazing with video alignment methods.

Note that since the codes of CG-IDN [29] and NCFL [9]
are not officially released at the time of this work, we imple-
ment these two methods to obtain their quantitative results
on our HazeWorld dataset.

More qualitative comparison. We show more visual com-
parisons of HazeWorld and REVIDE, as shown in Fig. 2 -
Fig. 7 and Fig. 8, respectively. The examples demonstrate
that our method can better remove the haze and generate
visually appealing results.

C.3. Applications

We choose four different methods for downstream appli-
cation validation, i.e., VPSNet [11] for video panoptic seg-
mentation on Cityscapes [3], PSPNet [30] for image seman-
tic segmentation on Cityscapes [3], PackNet-SfM [6] for
monocular depth estimation on DDAD [6], and STM [18]
for video object segmentation on DAVIS [19]. We use the
models trained on the original clear videos and obtain re-
sults on the input hazy videos, the dehazed videos, and the
underlying haze-free videos. The β for hazy videos is 0.02
for video panoptic segmentation, depth estimation, and im-
age semantic segmentation, and β is 0.03 for video object
segmentation. We select 6 videos for video panoptic seg-
mentation, 180 for image semantic segmentation, 50 for
monocular depth estimation, and 25 for video object seg-
mentation. The visual comparisons of these applications
are shown in Fig. 9 - Fig. 12.



Table 1. Statistics of our HazeWorld dataset. Note that we use four different β to synthesize the videos, resulting in four times the
number of hazy videos and frames in HazeWorld than shown in this table. The resolution indicates the shorter side of the video.

Source Dataset Scenario #Videos #Train/Test #Frames Diversity Downstream Resolution
Cityscapes [3] Driving 540 360/180 16,200 Medium Segmentation 720

DDAD [6] Driving 200 150/50 16,600 Medium Depth 720
UA-DETRAC [27] Surveillance 83 53/30 8,235 Low Detection 540

VisDrone [31] Drone 70 52/18 6,121 Medium Tracking 540, 720
DAVIS [19] Generic 117 51/66 8,198 High Segmentation 720
REDS [17] Life 261 231/30 26,100 Medium - 720

Table 2. Comparison of model size, FLOPs, and runtime.

Method Params (M) FLOPs (G) Runtime (ms) PSNR (dB)
MSBDN [5] 31.35 24.53 145 23.70
Dehamer [7] 132.4 48.26 202 22.92
DehazeFormer [24] 4.6 47.32 427 25.44
EDVR [26] 20.9 31.98 408 22.91
BasicVSR++ [2] 7.4 28.10 96 26.06
Our method 28.8 8.21 101 27.12

Table 3. Comparison of temporal stability. The relative standard
deviation (RSD) of PSNR is reported in percentage and warping
error (Ewarp) is reported in the scale of ×10−3.

Method MSBDN [5] Dehamer [7] EDVR [26] BasicVSR++ [2] Ours
Ewarp ↓ 1.38 1.44 1.53 1.26 1.17
RSD ↓ 3.62 4.37 3.81 4.20 3.33
PSNR ↑ 23.70 22.92 22.91 26.06 27.12

C.4. More Analysis of Our Method

Model Efficiency. We compare the number of parameters
(denoted as Params), FLOPs, and running time of our net-
work and state-of-the-art methods on a TITAN RTX GPU.
FLOPs are calculated at the input size of 256×256, and the
running time per frame is tested at the spatial dimension of
1,280×720, respectively, and the sequence length is 5. As
shown in Table 2, our method obtains the best PSNR value
with reasonable FLOPs and running time, which indicates
that MAP-Net performs better with a fast inference.

Temporal stability. Following [13], we utilize the flow
warping error (Ewarp) to measure the temporal consistency
of two consecutive frames quantitatively. We also use the
relative standard deviation (RSD) of PSNR to measure the
temporal coherence of dehazed videos. The optical flows
used for computing Ewarp are obtained by FlowNet2 [10]
on the haze-free videos. Table 3 shows that our network
has the smallest Ewarp value and the smallest RSD value
among all methods. It indicates that the dehazed video
frames of our network are clearer and more temporally sta-
ble than compared methods.

Comparisons using different training data. We train our
network using REVIDE [29] and HazeWorld separately and
test them on real outdoor hazy videos. As shown in Fig. 13,
we can observe that the model trained on REVIDE may re-

Table 4. Ablation studies of the memory in MPG.

(a) Discussion on the memory usage for the prior feature enhancement.

Memory ✓
PSNR 26.79 27.12

(b) Discussion on the number of transmission categories in MPG.

#Category w/o 16 32 (Ours) 64
PSNR 26.87 27.01 27.12 26.96

tain the haze, introduce color distortion, and produce arti-
facts. On the contrary, the model trained on HazeWorld can
produce visually appealing and naturally dehazed results,
which shows the advantage of our HazeWorld.

C.5. More Ablation Studies

Discussion on two major modules.
We provide qualitative results to understand the effec-

tiveness of our proposed memory-based physical prior guid-
ance (MPG) module and multi-range scene radiance recov-
ery (MSR) module. As shown in Fig. 14, since MPG pro-
vides haze prior information as guidance, e.g., transmission,
“Basic+MPG” is able to produce a more uniform color for
regions with similar transmission values, such as the road.
On the other hand, “Basic+MSR” can capture the scene and
haze clues from multiple adjacent frames, which restores
more fine details (see cropped regions). By combining these
two complementary contributions, our method clearly re-
moves the haze and better recovers the scene structures.

Discussion on our MPG module. We first discuss the ac-
curacy of the estimated physical prior-related components
(i.e., transmission and atmospheric light) to understand the
learned prior feature. Then, we discuss the effectiveness
of memory in our MPG. Note that we do not use ground
truth transmission t or atmospheric light A for supervision
during training. Since the ground truths of t and A are not
always available, we employ a reconstruction loss on the
reconstructed input image from estimated t and A to guar-
antee the estimation of t and A, i.e., physical haze prior.
This setting can apply to datasets without transmission or
atmospheric light labels, e.g., REVIDE. Since we have the
ground truths of t and A for the testing set of our dataset, we
can compute the quantitative mean absolute errors (MAE)



Table 5. Discussion on the alignment layer and flow loss when
the number of ranges is one.

Layer WA DCN DWA DWA+Lflow (Ours)
PSNR 25.83 24.11 25.75 26.24

for the transmission and atmospheric light estimation, and
the MAE values are 0.0419 and 0.0284, respectively. With
such t and A estimation errors, our experimental results on
real videos and benchmarks demonstrate that our method
outperforms state-of-the-art methods. Further, as shown
in Fig. 15, the reconstructed hazy image and the estimated
transmission are very close to the ground truth, indicating
that our model can recover the haze priors. Hence, the fea-
tures encoded with prior information from MPG provide
haze clue guidance on scene recovery.

We then perform ablation study experiments on mem-
ory in MPG. Table 4 reports the quantitative results for the
memory enhancement and the number of transmission cat-
egories for prior feature compression. Our method with
memory brings a performance gain of 0.33 dB in PSNR
compared to the baseline without memory for the prior fea-
ture enhancement due to the extracted long-range haze in-
formation in video sequences; see Table 4a. Moreover, we
study the number of transmission categories used for prior
feature compression. We also compare our method with the
simple memory implementation without compression (de-
noted as w/o), which directly saves the flattened feature map
into the memory. Only the features of scale 1/32 are used
for memory in this baseline due to the expensive memory
space requirement, especially for high-resolution videos.
As shown in Table 4b, our compression strategy outper-
forms the baseline since more compact historical haze in-
formation is encoded in the memory. Besides, we observe
that the network is not sensitive to the number of transmis-
sion categories. Hence, we empirically set the number of
transmission categories as 32 in our implementation.

Discussion on our MSR module. To understand their ef-
fectiveness, we first visualize the alignment process in the
space-time deformable attention block (STDA) and the ag-
gregation weight maps in the guided multi-range aggrega-
tion block (GMRA). Then, we briefly discuss the alignment
layers and flow loss.

Fig. 16 visualizes the warped images to showcase the
alignment quality and activation maps to show the regions
of interest. Some regions cannot be well aligned using
the frame-by-frame alignment due to the occlusion (see the
heads of women), which only considers one adjacent frame.
In contrast, the learned space-time flow captures the corre-
spondence from multiple frames for feature alignment, as
illustrated by the warped images. Meanwhile, from the ac-
tivation maps, the query in the target frame leverages tem-
poral information from multiple adjacent frames but only

focuses on corresponding regions. Hence, the multi-range
alignment captures the temporal scene and haze clues from
multiple space-time resolutions for scene recovery.

Fig. 17 shows the warping error maps and aggregation
weight maps from different ranges and aggregation perspec-
tives. The aggregation weight maps and warping error maps
from multiple ranges together demonstrate that the model
pays attention to different range features by considering the
alignment quality. Moreover, the prior guidance provides
haze clues on the aggregation process, as indicated by the
aggregation weight maps concerning the transmission val-
ues from the prior and the scene perspectives.

We further conduct ablation experiments on the align-
ment layer and flow loss. As shown in Table 5, the lo-
cal window attention (WA) [15] produces reasonable re-
sults (25.83 dB) because of its relatively large receptive
field but is not able to capture correspondence for ob-
jects with noticeable misalignment in dynamic scenes (see
examples in Fig. 16). The DCN layer [4] for temporal
alignment suffers from unstable training with poor perfor-
mance (24.11 dB), which is also observed in [2]. Lastly, our
deformable attention with learned space-time flows trained
using flow loss captures the scene and haze correspondence,
which benefits from aligned pixel-wise temporal informa-
tion and achieves better dehazing performance (26.24 dB).



(a) GT frames (b) β = 0.005 (c) β = 0.01 (d) β = 0.02 (e) β = 0.03 (f) Depth

Figure 1. Example video frames in our HazeWorld dataset with different β.
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Figure 2. Visual comparison of video dehazing results on HazeWorld #1.
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Figure 3. Visual comparison of video dehazing results on HazeWorld #2.
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Figure 4. Visual comparison of video dehazing results on HazeWorld #3.
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Figure 5. Visual comparison of video dehazing results on HazeWorld #4.

10.83 dB
Hazy

20.84 dB
MSBDN [5]

21.07 dB
Dehamer [7]

16.28 dB
VDHNet [22]

19.79 dB
EDVR [26]

19.97 dB
BasicVSR++ [2]

22.83 dB
Our method

PSNR
GT

Figure 6. Visual comparison of video dehazing results on HazeWorld #5.
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Figure 7. Visual comparison of video dehazing results on HazeWorld #6.
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Figure 8. Visual results of W002 video from REVIDE [29].



Hazy MSBDN [5] Dehamer [7] EDVR [26]

BasicVSR++ [2] Our method Haze-free

Figure 9. Visual results of video panoptic segmentation on HazeWorld. We show the hazy/dehazed/haze-free frames (the first row) and the
corresponding results (the second row).

Hazy MSBDN [5] Dehamer [7] EDVR [26]

BasicVSR++ [2] Our method Haze-free

Figure 10. Visual results of image semantic segmentation on HazeWorld. We show the hazy/dehazed/haze-free frames (the first row) and
the corresponding results (the second row).



Hazy MSBDN [5] Dehamer [7] EDVR [26]

BasicVSR++ [2] Our method Haze-free

Figure 11. Visual results of monocular depth estimation on HazeWorld. We show the hazy/dehazed/haze-free frames (the first row) and
the corresponding results (the second row).

Hazy MSBDN [5] Dehamer [7] EDVR [26]

BasicVSR++ [2] Our method Haze-free

Figure 12. Visual results of video object segmentation on HazeWorld. We show the hazy/dehazed/haze-free frames (the first row) and the
corresponding results (the second row).



Hazy REVIDE HazeWorld

Figure 13. Visual comparison results on real hazy videos. The results are generated by our method trained using REVIDE and HazeWorld.
The model trained on REVIDE tends to retain some haze, introduce color distortion, and produce artifacts.
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(c) Basic+MPG (d) Basic+MSR

(e) Our method (f) GT

Figure 14. Visual results on the effectiveness of the memory prior guidance (MPG) module and the multi-range scene recovery (MSR)
module. (c) The result of “Basic+MPG” loses fine details because of the lack of temporal information from multiple adjacent frames (see
the cropped regions). (d) The result of “Basic+MSR” suffers from non-uniform colors since no prior haze clues are provided, as indicated
by the red arrows. (e) Our method with MPG and MSR generates a clearer and more visually appealing dehazed result, benefiting from
two complementary contributions.



(a) Hazy (b) Î (c) t̂ (d) GT Transmission (e) Our method (f) GT

Figure 15. Visualization of intermediate component predictions by our method on HazeWorld. Î , t̂ are the reconstructed hazy image and
estimated transmission map, respectively.



(a) Neighboring frame (i− 3) (b) Neighboring frame (i− 2) (c) Neighboring frame (i− 1) (d) Target frame (i)

(e) Warped image (r = 1)
0.1290

(f) Warped image (r = 2)
0.1269

(g) Warped image (r = 3)
0.1313

(h) GT image
MAE

(i) Activation map (i− 3) (j) Activation map (i− 2) (k) Activation map (i− 1) (l) Activation map (i)

Figure 16. Analysis of multi-range alignment. We visualize the warped images to showcase the alignment quality and activation maps
to show the regions of interest. (e-g) The warped images are obtained by the space-time sampling operation, which takes the ground truth
neighboring frames, and the learned space-time flows from our model as the inputs. Note that some regions cannot be well aligned if only
considering one adjacent frame due to occlusion, e.g., women’s heads, as indicated by blue arrows. MAE stands for mean absolute error,
which measures the deviations between the warped image and the ground truth image (the lower, the better). (i-l) The activation maps are
visualized for different adjacent frames given the query region denoted by a blue star in the target frame (h).

(a) Neighboring frame (i− 3) (b) Neighboring frame (i− 2) (c) Neighboring frame (i− 1) (d) Target frame (i)

(e) Warping error map (r = 1) (f) Warping error map (r = 2) (g) Warping error map (r = 3) (h) Aggregation weight map (prior)

(i) Aggregation weight map (r = 1) (j) Aggregation weight map (r = 2) (k) Aggregation weight map (r = 3) (l) Aggregation weight map (scene)

Figure 17. Analysis of guided multi-range aggregation. We visualize the warping error and aggregation weight maps. (e-g) The warping
error maps are computed between the warped images and the ground truth image. (i-k) The model pays attention to different range features
considering the alignment qualities, as indicated by the red/blue arrows. (h, l) The aggregation weights from the prior and the scene
perspectives are assigned to different regions concerning the transmission. The darker colors denote the larger error/weight values.



References
[1] Mario Bijelic, Tobias Gruber, Fahim Mannan, Florian Kraus,

Werner Ritter, Klaus Dietmayer, and Felix Heide. Seeing
through fog without seeing fog: Deep multimodal sensor fu-
sion in unseen adverse weather. In CVPR, 2020. 2

[2] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and
Chen Change Loy. Basicvsr++: Improving video super-
resolution with enhanced propagation and alignment. In
CVPR, 2022. 2, 3, 4, 6, 7, 8, 9, 10

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 2, 3

[4] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In ICCV, 2017. 4

[5] Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang,
Fei Wang, and Ming-Hsuan Yang. Multi-scale boosted de-
hazing network with dense feature fusion. In CVPR, 2020.
3, 6, 7, 8, 9, 10

[6] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In CVPR, 2020. 2, 3

[7] Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong,
Wenqi Ren, and Chongyi Li. Image dehazing transformer
with transmission-aware 3d position embedding. In CVPR,
2022. 2, 3, 6, 7, 9, 10

[8] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze
removal using dark channel prior. TPAMI, 2010. 6, 7

[9] Cong Huang, Jiahao Li, Bin Li, Dong Liu, and Yan Lu. Neu-
ral compression-based feature learning for video restoration.
In CVPR, 2022. 2, 8

[10] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In CVPR,
2017. 3

[11] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So
Kweon. Video panoptic segmentation. In CVPR, 2020. 2

[12] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust
consistent video depth estimation. In CVPR, 2021. 2

[13] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman,
Ersin Yumer, and Ming-Hsuan Yang. Learning blind video
temporal consistency. In ECCV, 2018. 2, 3

[14] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and
Dan Feng. End-to-end united video dehazing and detection.
In AAAI, 2018. 6, 7

[15] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 4

[16] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, 2022. 2

[17] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik
Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee.

Ntire 2019 challenge on video deblurring and super-
resolution: Dataset and study. In CVPRW, 2019. 2, 3

[18] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In ICCV, 2019. 2

[19] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo
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