
A. Appendix
This Appendix includes:

1. Reference to video with qualitative examples of EgoT2

2. Experimental Setup

3. Additional Results

4. Additional Visualizations

A.1. Video containing qualitative results
We invite the reader to view the video available at

https://vision.cs.utexas.edu/projects/

egot2/ where we show qualitative examples of (a) how
EgoT2 captures inter-frame and inter-task relations, (b)
video retrieval results using attention weights of task tokens
and (c) how EgoT2-g makes predictions conditioned on the
task prompt and given video.

From these examples, we can see that EgoT2 offers good
interpretability on task relations, revealing clearly which
temporal segments and which subsets of tasks contribute to
improving a given task. Moreover, we run EgoT2-s on all
AR validation videos and retrieve video segments with top
PNR and OSCC weights. The results show that videos with
large PNR and OSCC weights actually all involve heavy
human-object interactions, which is the focus of these two
tasks. Finally, we observe that EgoT2-g successfully per-
forms task translation conditioned on the task of interest and
task tokens through encoder-decoder attention weights.

A.2. Experimental Setup
Below we provide detailed descriptions of the 7 tasks we

adopt in our study.

• Point-of-no-return Keyframe Localization (PNR):
given a short video of a state change, estimate the
keyframe that contains the time at which a state
change begins.

• Object State Change Classification (OSCC): given a
video clip, classify whether an object state change has
taken place or not.

• Action Recognition (AR): classify the action (verb and
noun) of the camera wearer from a short egocentric
video clip; there are 115 verb categories and 478 noun
categories.

• Long-term Action Anticipation (LTA): given a video
clip, predict the camera wearer’s future sequence of
actions; the action vocabulary is identical to that used
in AR.

• Looking At Me (LAM): given an egocentric video in
which the faces of social partners have been localized
and identified, classify whether each face is looking at
the camera wearer.

• Talking To Me (TTM): given a video and audio with
the same tracked faces, classify whether each face is
talking to the camera wearer.

• Active Speaker Detection (ASD): given a cropped face
video clip and corresponding audio segments, identify
whether this person is speaking.

A.2.1 Dataset Details

Note that Ego4D does not have a common training set that
provides labels for all tasks. In all of our experiments, the
task-specific models are trained on 7 subsets of Ego4D. Ta-
ble 7 reports the percentage of training videos shared be-
tween task pairs. Among the 7 task datasets, the average
data overlap between two tasks is 22.5%, and for 57.1% of
the task pairings there is strictly disjoint training data. The
limited intersections in these 7 task datasets lend support to
the generalizability of EgoT2 across multiple datasets.

PNR OSCC AR LTA LAM TTM ASD

PNR 100 48.2 32.6 32.6 0 0 0
OSCC 48.2 100 67.0 67.0 0 0 0

AR 32.6 67.0 100 100 0 0 0
LTA 32.6 67.0 100 100 0 0 0
LAM 0 0 0 0 100 12.8 12.8
TTM 0 0 0 0 12.8 100 100
ASD 0 0 0 0 12.8 100 100

Table 7. Percentage of training videos shared between task pairs
for the 7 tasks used in the experiments. There is a low level of data
overlap between individual task pairs.

A.2.2 Implementation Details

Task-Specific Translation. As shown in Table 1 of the
main paper, the LTA task-specific backbone requires videos
of 16 seconds while the other three human-object interac-
tion tasks operate on videos of 8 seconds. Therefore, when
Tp is LTA, we slide the other task-specific backbones along
the 16-seconds time window to obtain auxiliary task fea-
tures; the stride size is set to 8 seconds. When Tp is PNR,
OSCC or AR, LTA is not a valid auxiliary task since its task-
specific model requires video of a longer temporal span than
provided in these three datasets. While it is possible to ex-
pand the video for the LTA model to be applicable, we aim
at avoiding advantages brought by a longer time window for
a fair comparison with prior work and thus exclude LTA as
the auxiliary task. Nevertheless, to provide a complete eval-
uation, we consider one such special case when the primary
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task is AR and the auxiliary task is LTA (see results marked
with ? in Table 9). Similarly, for the 3 human-human inter-
action tasks, LAM dataset provides video instances of 0.2
seconds while the TTM and ASD task-specific model re-
quires videos of a longer time span. Consequently, LAM is
not considered as the primary task.
Task-General Translation. For human-object interaction
tasks, we follow common practices [26] and treat predict-
ing verbs and nouns as two separate tasks. EgoT2-g is thus
jointly optimized on 6 tasks: PNR, OSCC, AR Verb, AR
Noun, LTA Verb and LTA Noun. We simplify the LTA task
as predicting actions at a single timestamp into the future
as opposed to the 20 timestamps considered in the origi-
nal benchmark since otherwise the decoder would be heav-
ily biased towards the LTA task (see parameter compari-
son in Table 2 of the main paper). While EgoT2-s pre-
dicts future actions at future 20 timestamps and uses edit
distance@20 (ED@20) as the metric, we report verb and
noun accuracy for LTA in EgoT2-g. For human-human in-
teractions, while LAM is not considered as the primary task
for EgoT2-s, EgoT2-g provides the flexibility to incorporate
LAM in training as well. In particular, when task prompt is
LAM, we feed LAM tokens as input to the task fusion trans-
former and do not use other task tokens following the time
span guidelines discussed above.
Tokenization and Detokenization. We construct a small
task-related vocabulary for the sequence decoder in EgoT2-
g to work. Namely, it is based on the label spaces of
all candidate tasks and maps the original output label to a
vocabulary. For PNR, we transform the output keyframe
(i.e., an integer from 0-15) to be its character format. For
OSCC/LAM/TTM/ASD, we transform the output label to
the word ‘True’ or ‘False’. For AR and LTA, we use the
verb and noun vocabulary and transform the label to the
word. In addition, we include the 7 task prompts (i.e., PNR,
OSCC, AR, LTA, LAM, TTM and ASD) in the vocabulary.
Consequently, we can transform the original label for all
tasks to be a sequence and transform the predicted sentence
back to the original label since it is a one-to-one mapping.
Note that EgoT2-g is not sensitive to the choice of prompts.
For example, the human-human interaction task prompts
are [LAM], [TTM], [ASD], but [TaskA], [TaskB], [TaskC]
would work too. Any output tokens outside the target task’s
label space are considered incorrect predictions. We find
that EgoT2-g learns to predict words within the target task
dictionary after a few epochs.
Hyperparameters and Optimization. Our implementa-
tion is based on the official Ego4D codebase.6 EgoT2-s re-
tains the same training configurations (e.g., batch size, op-
timizer, total number of training epochs) unless otherwise
specified. (1) Tp is PNR: Transfer (AR) is implemented
as a SlowFast backbone pretrained on AR dataset followed

6
https://github.com/EGO4D.

by a 1-layer MLP with hidden dimension of 4096 and the
PNR prediction head. Similarly, Finetuning and Transfer
(OSCC) consists of a I3D ResNet-50 backbone pretrained
on PNR and OSCC respectively followed by a 1-layer MLP
with hidden dimension of 512 and the PNR prediction head.
Late Fusion uses 3 1-layer MLPs to map features generated
by each task-specific model (i.e., PNR, OSCC and AR) to
be 512-dimensional and concatenates the three task-specific
features; the concatenated features are then passed to the
PNR prediction head. EgoT2-s consists of 6-layer trans-
former encoders with hidden dimension of 128. (2) Tp is
OSCC: we follow the same way as in PNR to implement
these baselines, and the task fusion transformer in EgoT2-s
has 5 layers with hidden dimension set as 128. (3) Tp is AR:
Late Fusion follows the same design as in PNR and OSCC
but has hidden dimension equal to 256. EgoT2-s uses a
transformer encoder of 3 layers and hidden dimension set
as 128. (4) Tp is LTA: The hidden dimension of Finetun-
ing, Transfer and Late Fusion is set as 2048. EgoT2-s has a
1-layer transformer encoder with 128 dimension. (5) Tp is
TTM: Finetuning and Transfer baselines are implemented
as 3-layer MLPs with hidden dimension set as 1024 and
512. Late Fusion uses a 2-layer MLP to take concatenated
features as input and passes the processed features to the
TTM prediction head. EgoT2-s uses a 1-layer transformer
encoder with hidden dimension of 128. (6) Tp is ASD: The
baselines follow the same design as in TTM, and the hidden
dimension of Transfer and Late Fusion is set as 6144 and
2048, respectively. EgoT2-s uses a 1-layer transformer en-
coder with hidden dimension of 256. Learning rate is set as
1e-3.

For EgoT2-g on human-object interaction tasks, we use a
batch size of 4⇥ 8 distributed over 8 GPUs. The task trans-
lator consists of 3 transformer encoder layers and 3 trans-
former decoder layers with hidden dimension equal to 512.
We use AdamW optimizer with learning rate and weight
decay set as 1e-4. For human-human interaction tasks, we
set the batch size for LAM, TTM and ASD to be 256, 15
and 1800 respectively to balance three dataloaders. The
task translator has 1 transformer encoder layer and 1 trans-
former decoder layer with hidden dimension set as 128. We
use Adam optimizer with learning rate of 5e-4 and weight
decay of 5e-5. All models are trained for 20 epochs.

A.3. Additional Results

Analysis on Task Relations. From Table 2-3 in the main
paper, we observe the superior performance of EgoT2-s.
Moreover, Transfer baseline results from these two tables
offer insights on task relations. Intuitively, tasks within one
benchmark (e.g., AR and LTA) are very related and can help
each other, and tasks across benchmarks (e.g., PNR and AR,
OSCC and AR) may seem unrelated at first sight. It is inter-
esting to see that our results capture both inter-benchmark
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Tp is TTM Tp is PNR Tp is OSCC
# Params ·106 mAP # Params ·106 Error # Params ·106 Acc.
Trainable (All) (s) Trainable (All) (s) # Trainable (All) (%) "

TS model [23] 20.2 (20.2) 58.91 32.2 (32.2) 0.615 32.2 (32.2) 68.22

EgoT2-s (Subset of Tasks) 0.7 (35.3) 65.89 5.8 (70.2) 0.608 5.8 (70.2) 69.69
EgoT2-s (All Tasks) 0.7 (51.1) 66.54 6.4 (132) 0.610 7.4 (133) 72.69

Table 8. Results of EgoT2-s when primary task is Tp is TTM, PNR and OSCC. We compare EgoT2-s that uses a subset of auxiliary tasks
with EgoT2-s using all auxiliary tasks. When Tp is TTM, ‘Subset of Tasks’ denote TTM and LAM; When Tp is PNR or OSCC, ‘Subset of
Tasks’ denote PNR and OSCC.

Tp is AR Tp is LTA
# Params ·106 Acc. (%) " # Params ·106 ED@20 #
Trainable (All) Verb Noun Trainable (All) Verb Noun

TS model [23] 63.3 (63.3) 22.18 21.55 180 (242) 0.746 0.789

EgoT2-s (Subset of Tasks) 2.4 (282) 21.94? 23.33? 25.0 (304) 0.739 0.774
EgoT2-s (All Tasks) 4.3 (130) 23.04 23.28 41.8 (348) 0.731 0.769

Table 9. Results of EgoT2-s when primary task is Tp is AR and LTA. ‘Subset of Tasks’ denote AR and LTA. The results achieved with
expanded video length are makred with a ?.

and intra-benchmark task relations: (1) when Tp is PNR,
the Transfer of OSCC or AR features yields similar results,
achieving the temporal localization error of 0.611 and 0.613
seconds, respectively; (2) when Tp is OSCC, surprisingly,
Transfer (AR) outperforms Transfer (PNR) and a dedicated
OSCC model (i.e., Finetuning) by ⇠3%; (3) when Tp is AR
or LTA, PNR and OSCC features transfer better to predict-
ing verbs than predicting nouns. We hypothesize that this
is because an object state change is dependent on verbs and
agnostic to nouns.

We find that the task of action recognition (AR) is very
informative in predicting the other 3 tasks; this suggests that
similar to common practices in third-person video under-
standing (e.g., finetuning an action recognition model pre-
trained on Kinetics to other downstream tasks), the Ego4D
AR model can also serve as a good initialization choice for
other egocentric video tasks. In addition, from the task
definition, PNR and OSCC are more object-centric while
AR and LTA focus on human activities. Besides the ob-
vious task relations (i.e., PNR to OSCC, AR to LTA), we
uncover connections between tasks belonging to different
benchmarks as well. AR task provides information comple-
mentary to primary task features and benefits OSCC. PNR
and OSCC models convey information that are helpful for
classifying verbs in AR and LTA.

For human-human interactions, when the primary task
is TTM, the good results achieved by Transfer (LAM) and
Transfer (ASD) indicate that both auxiliary tasks provide
informative cues for TTM. This also aligns with our intu-
ition that LAM and TTM are very related tasks as people
tend to make eye contact when they talk to someone. In
addition, when Tp is ASD, Transfer baseline results indi-

cate that TTM and LAM are detrimental to the ASD task.
We conjecture that this may be because the act of someone
looking at the camera wearer does not necessarily relate to
the fact that this person is the active speaker. In all, we hope
our analysis on task relations can facilitate holistic egocen-
tric video understanding.
Varying the Set of Auxiliary Tasks. In Table 2-3 of the
main paper we presented results for EgoT2-s (All Tasks),
where all tasks within the same cluster of Tp are adopted
as auxiliary tasks. Here we consider the setting where we
constrain the auxiliary tasks to be within the same bench-
mark as Tp. Results of EgoT2-s using a subset of tasks7 are
shown in Table 8-9.

By comparing results of EgoT2-s (Subset of Tasks) and
EgoT2-s (All Tasks) in these two tables, we see that there
are cases where EgoT2 can effectively leverage synergies
between tasks that belong to different benchmarks. For in-
stance, when Tp is OSCC, since AR features provide ben-
eficial cues, EgoT2-s with all auxiliary tasks outperforms
by 3% the EgoT2-s variant that only uses PNR and OSCC
features. Conversely, we would expect that the introduc-
tion of inter-benchmark auxiliary tasks may cause a detri-
mental effect when the benchmarks involve dissimilar tasks,
for instance, when Tp is PNR. However, even in such case
EgoT2-g (All Tasks) is still on-par with EgoT2-g (Subset of
Tasks) and it outperforms all transfer baselines. This sug-
gests that it has strong ability to mitigate negative transfer.
Ablation Study. In Table 4 of the main paper, we provided
an ablation study of EgoT2-s when the primary task is TTM
to validate our design choices. Here, we conduct another set

7We exclude ASD here since there is no other task from the same
benchmark as ASD (see Table 1 in the main paper).



# Params ·106
Trainable (All)

Auxiliary
Tasks

Temporal
Information

Frozen
TS model

mAP
(%) "

(a) 8.9 (105) X X 69.68
(b) 7.4 (133) X X 71.65
(c) 133 (133) X X 72.22
(d) 7.4 (133) X X X 72.69

Table 10. Ablation study of EgoT2-s (Tp is OSCC).

Acc. (%) SlowFast EgoVLP

TS Model 68.22 73.00
EgoT2-s 72.69 75.77

Table 11. Experiments with the TS model being SlowFast and
EgoVLP when Tp is OSCC. By resorting to auxiliary task informa-
tion, EgoT2-s demonstrates further performance improvements.

of ablation studies for the case when Tp is OSCC. The re-
sults are summarized in Table 10. The results are consistent
with those reported in Table 4. The three components (i.e.,
the introduction of auxiliary tasks, preserving temporal in-
formation and freezing TS backbones) work together and
contribute to the efficacy of EgoT2-s.
Experiments with a different TS backbone. In the ex-
periments presented in the main paper, we selected as TS
backbones, the baseline models of Ego4D in order to fa-
cilitate comparison with prior work and to demonstrate the
ability of our approach to achieve state-of-the-art results
with simple network designs. However, EgoT2-s provides
a flexible framework that can incorporate any advanced ar-
chitecture. Here we demonstrate this flexibility by replac-
ing the I3D ResNet-50 backbone with a video transformer
used in EgoVLP [40] for the case when Tp is OSCC. We
report results in Table 11. We find that the improvement
brought by auxiliary task information (i.e., AR in this case)
is orthogonal to architecture advances and pretraining tech-
niques. EgoT2-s can further improve the EgoVLP model
performance by 2.77%.
Comparison of EgoT2-s and EgoT2-g. We provide a side-
by-side comparison of our proposed two variants of EgoT2
over the TS model in Figure 7. As discussed in Sec. A.2.2,
LTA has two metrics (accuracy for future 1 timestamp and
edit distance for future 20 timestamps). Since EgoT2-s is
optimized towards long-term predictions and EgoT2-g is
trained to make one-step predictions, EgoT2-s does not per-
form as well as EgoT2-g in terms of LTA verb and noun ac-
curacy, and ED@20 is not computable for EgoT2-g. In gen-
eral, EgoT2 achieves great performance gains over the TS
models across tasks, and EgoT2-s leads to top performance.
Moreover, Table 12 compares the number of trainable pa-
rameters and multiply-accumulate operations required for
EgoT2-s and EgoT2-g. For EgoT2-s, we sum the train-
able parameters (computations) of all task translators within

Figure 7. Performance comparison of two variants of EgoT2 with
the TS models on 6 tasks. EgoT2 leads to great improvement over
the TS model and EgoT2-s achieves top performance.

Human-Object Tasks Human-Human Tasks
# Params # MACs # Params # MACs

Sum of EgoT2-s 2.2 1802.5 59.9 386.6
EgoT2-g 1.4 1803.6 34.5 386.2

Table 12. Efficiency comparison of two variants of EgoT2. We
report the number of trainable parameters (in millions) and the
multiply-accumulate operations (MACs, in billions) required for
one forward pass. Compared with a set of EgoT2-s models devel-
oped for each task, EgoT2-g has fewer trainable parameters and
similar computational costs.

one cluster. EgoT2-g shares the task translator across tasks
within one cluster and hence saves parameters. The com-
putational costs of EgoT2-s and EgoT2-g are similar, as the
majority of the computation lies in the task-specific back-
bones, which are identical in both variants.
EgoT2-g across Task Clusters. In Table 5 of the main pa-
per, we presented separate results of EgoT2-g on the clus-
ter of human-human interaction (HHI) tasks and the clus-
ter of human-object interaction (HOI) tasks due to the sub-
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Figure 8. Average encoder-decoder attention weights of EgoT2-g.
The heatmaps illustrate how task-specific feature tokens (x axis)
contribute to the task of interest (y axis) in task translation.

stantial domain gap between hese two clusters of Ego4D
videos. Take Figure 4 as an example, videos from HOI
task datasets (upper figure) only capture human-object in-
teractions and do not have other people in the scene. Thus,
no HH interactions would be detected in these HOI videos,
and as such we would not expect HHI features to contribute
to HOI tasks. To verify this hypothesis, we implement a
cross-cluster EgoT2-g that attends to two HOI tasks (PNR
and OSCC) and one HHI task (LAM) simultaneously and
report the results in Table 13. The cross-cluster EgoT2-g
yields similar performance with intra-cluster EgoT2-g.

PNR
Error (s) #

OSCC
Acc. (%) "

LAM
mAP (%) "

EgoT2-g (intra-cluster) 0.612 68.6 77.63
EgoT2-g (cross-cluster) 0.611 68.3 77.56

Table 13. Results of EgoT2-g across 2 task clusters. Due to the
domain gap between human-human interaction tasks and human-
object interaction tasks, EgoT2-g (cross-cluster) does not lead to
further improvement compared with the EgoT2-g variant trained
within the same task cluster.

A.4. Additional Visualizations
Finally, Figure 8 shows encoder-decoder attention

weights of the last layer transformer produced by EgoT2-g
for 3 human-human interaction (HHI) tasks and 6 human-
object interaction (HOI) tasks. The attention weights of
task-specific tokens are temporally pooled into one token
and averaged over all validation video data. x axis are dif-
ferent task tokens and y axis corresponds to task prompts.
Note that in Figure 1 in the main paper, we average the
attention weights of verb and noun for AR and LTA and
visualize the resulting 4 ⇥ 4 matrix. Figure 8 reveals in-
herent task relations and provides an intuitive illustration of
how the task-general translator utilizes task tokens differ-
ently conditioned on the task of interest (i.e., task prompt).
In the left figure, we observe that LAM and ASD features

have large attention weights when the task prompt is TTM,
indicating that EgoT2-g effectively utilizes the two rele-
vant tasks to improve TTM predictions. On the contrary,
when the task prompt is ASD, ASD tokens are largely acti-
vated while non-beneficial LAM and ASD tokens are rarely
adopted in task translation. This demonstrates that EgoT2-
g learns to selectively activate task tokens to mitigate the
issue of negative transfer. In the right figure, AR task to-
kens are more activated given that the task prompt is OSCC
rather than PNR. This aligns with our previous finding in
EgoT2-s that AR features are beneficial for the OSCC task.
Also, when the task of interest is predicting nouns (i.e., task
prompt is AR noun or LTA noun), attention weights of PNR
and OSCC are very small, which indicates that the two task
features do not help in noun prediction. The conclusion is
also consistent with EgoT2-s.
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