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This supplementary material includes an extensive de-
scription of Cross-Attention (CA) (§A), the algorithm of
Rectified Cross-Attention (RCA) (§B), additional imple-
mentation details (§C), more qualitative results on freestyle
layout-to-image synthesis (FLIS) (§D), more comparisons
with layout-to-image synthesis (LIS) baselines (§E), the di-
versity evaluation (§F), discussions about the optimal form
of textual inputs (§G), more failure cases of our approach
(§H), some results on rectangular datasets (§I), and discus-
sions about the societal impact (§J).

A. Cross-Attention (CA) in Stable Diffusion

This is supplementary to Section 4.1 “rectifying diffusion
model”. In this section, we provide an elaboration of Cross-
Attention (CA) for a clearer comparison with our proposed
Rectified Cross-Attention (RCA). For a CA layer in Stable
Diffusion, let φI and φT denote the input image feature and
text embeddings, respectively. Image queries Q, text keys
K, and text values V can be calculated by:

Q = WQ · φI , K = WK · φT , V = WV · φT , (S1)

where WQ, WK , and WV are learnable projection matrices.
Then attention score mapsM are computed as:

M =
QKT

√
d
∈ RC×H×W , (S2)

where d is the scaling factor that is set as the dimension of
the queries and keys, and C, H , W are the channel number,
height, and weight of M, respectively. After that, we can
calculate the output image feature O of this CA layer by:

O = softmax(M)V. (S3)

A visual illustration of CA is shown in Figure S1. In
contrast, the proposed RCA rectifies M via Eq. 2 in the
main paper before applying softmax.

text embeddings

K

Q

attention score
maps

V
input 

image feature
output 

image feature

Cross-Attention  

Matrix Multiplication

Figure S1. An illustration of Cross-Attention (CA).

B. Algorithm

This is supplementary to Section 4.1 “rectifying diffusion
model”. The computation pipeline of RCA is illustrated in
Algorithm 1.

C. Additional implementation details

This is supplementary to Section 5.1 “experimental set-
tings”. Training on COCO-Stuff/ADE20K takes about 6/2
days on a single NVIDIA A100 GPU. All our experiments
are conducted using Stable Diffusion v1.4.

D. More qualitative results on FLIS

This is supplementary to Section 5.2 “qualitative evalua-
tion on FLIS”. In Figures S2, S3, and S4, we present more
FLIS results by using the proposed model. They demon-
strate the capability of our method for FLIS and its high
potential to spawn various applications.

E. More comparisons with LIS baselines

This is supplementary to Section 5.3 “comparison with
LIS baselines”. In this section, we provide more compari-
son results between SPADE [7], CC-FPSE [5], OASIS [9],
SC-GAN [12], PITI [10], and our method. Figures S5 and
S6 show the results on COCO-Stuff [2] and ADE20K [14],



Algorithm 1: RCA
Input: Input image feature φI , text embeddings

φT , and layout l
Output: Output image feature O

1 Get image queries Q, text keys K, and text values V
by Eq. (S1)

2 Get attention score mapsM∈ RC×H×W by Eq. (1)
3 Initialize a mask L ∈ RC×H×W

4 Resize l to match the spatial size ofM
5 for k in {0, 1, ..., C − 1} do
6 if The k-th text embedding corresponds to a

concept m then
7 Find the binary map lm ∈ RH×W in l

corresponding to this concept
8 Lk ← lm

9 else
10 Lk ← 1
11 end
12 end
13 Get the rectified attention score maps M̂ by Eq. (2)
14 Get the output image feature O by Eq. (3)

respectively. These results indicate the superiority of our
method in generating high-fidelity images in the context of
LIS.

For a fair comparison with PITI, we replace its pre-
trained text-to-image diffusion model (GLIDE [6]) with
Stable Diffusion [8]. Due to time limits, we carefully tune
learning rates only when training its model (we call it PITI
w/ SD). Some visual results are provided in Figure S7. The
images synthesized by PITI w/ SD exhibit good visual qual-
ity but the spatial alignment with the input layout is poor
(clearly poorer than ours). The quantitative comparison re-
sults are also provided in Table S1.

Here we compare our FreestyleNet with additional re-
lated works including Lab2Pix-V2 [15], sVQGAN-T [1],
and PoE-GAN [4]. The comparison results under the in-
distribution setting is reported in Table S2. As neither
sVQGAN-T [1] nor PoE-GAN [4] provide code, their re-
sults are copied from their papers. These results showcase
our superiority over the others.

F. Diversity evaluation

This is supplementary to Section 5.3 “comparison with
LIS baselines”. In this section, we conduct some experi-
ments to evaluate the generation diversity of different meth-
ods. Note that our model naturally enables generation with
high diversity from the same layout by using various texts
(see Figures 1, 4, and 6 in the main paper). Here we perform
the diversity evaluation in the conventional LIS setting. Fol-

Method PITI w/ SD FreestyleNet (ours)

FID↓ 15.5 14.4
mIoU↑ 13.1 40.7

Table S1. Quantitative comparison results with PITI w/ SD on
COCO-Stuff.

Method
COCO-Stuff ADE20K

FID↓ mIoU↑ FID↓ mIoU↑
Lab2Pix-V2 [15] 18.1 40.5 31.3 41.0
sVQGAN-T [1] 28.8 - 38.4 -
PoE-GAN [4] 15.8 - - -

FreestyleNet (ours) 14.4 40.7 25.0 41.9

Table S2. Comparison results with additional related works.

Method
LPIPS↑

COCO-Stuff ADE20K

CC-FPSE [5] 0.089 0.129
OASIS [9] 0.345 0.285
PITI [10] 0.523 0.480

FreestyleNet (ours) 0.592 0.591

Table S3. Diversity evaluation results. Pix2PixHD [11],
SPADE [7], and SC-GAN [12] do not support diverse generation
(i.e., LPIPS is 0).

lowing OASIS [9], we calculate LPIPS [13] between im-
ages generated from the same layout (and same text for our
model) but with randomly sampled noise. The evaluation
results are provided in Table S3. Our model achieves the
highest LPIPS among all comparison methods. We also
show some visual samples in Figure S8.

G. Optimal form of textual inputs

This is supplementary to Section 4.1 “rectifying diffusion
model”. As full-form image descriptions are expensive (or
even intractable) to collect, we suggest using the stacked
concepts which can be easily obtained from semantic labels.
Moreover, stacked concepts fit naturally into the design of
RCA, which builds the relationship between each individ-
ual semantic and its position on the image. We actually
have explored several alternatives (which perform worse),
including (1) keyword-to-sentence translation, (2) learnable
prompts, and (3) manual construction of full-form prompts
for inference. We believe that looking for the optimal form
of textual inputs is important, and we will explore it for fu-
ture work.



H. More failure cases

This is supplementary to Section 5.5 “limitations”. In Fig-
ure S9, we show more failure cases of the proposed model.
These results are in line with our conclusion that our method
sometimes fails to synthesize counterfactual scenes. This
limitation can possibly be alleviated in our future work, by
1) leveraging more powerful pre-trained text-to-image mod-
els, and 2) investigating better ways to retain the generative
capability of the pre-trained model, perhaps by prompting
techniques.

I. Results on rectangular datasets
The pre-trained Stable Diffusion that we leverage is de-

signed to generate square (512×512) images. To verify the
validity of the proposed method on rectangular datasets, we
train our model on Cityscapes [3]. We resize all images of
Cityscapes to 512×512 during training and resize the syn-
thesized results back to the original size in testing phase.
As shown in Figure S10, our method yields visually pleas-
ing results.

J. Societal impact
Our method allows the users to generate diverse images

using text and layout. This ability may be maliciously used
for content, which incurs potential negative social impacts
such as the spread of fake news and invasion of privacy.
To mitigate them, powerful deepfake detection methods that
automatically distinguish deepfake images from real ones
are needed.
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Figure S2. Supplementary to Figure 4. Our FreestyleNet is able to bind new attributes to the objects.
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Figure S3. Supplementary to Figure 4. Our FreestyleNet is able to specify the styles for the synthesized images.
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Figure S4. Supplementary to Figure 4. Our FreestyleNet is able to generate unseen objects.
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Figure S5. Supplementary to Figure 5. Visual comparison results with LIS baselines on COCO-Stuff.
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Figure S6. Supplementary to Figure 5. Visual comparison results with LIS baselines on ADE20K.
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Figure S7. PITI w/ SD represents the PITI method whose diffusion model (GLIDE) is replaced by Stable Diffusion.
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Figure S8. Diverse generation results of our FreestyleNet.
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Figure S9. Supplementary to Figure 7. Failure cases. It is difficult for our FreestyleNet to generate some rare semantics or unreasonable
scenes.
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Figure S10. Generation results of our FreestyleNet on Cityscapes.
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