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In the supplementary material, we first show localiza-
tion results on Extended CMU-Seasons dataset in Table 1.
Next, we give more qualitative comparison of previous and
our methods on feature extraction and matching in Sec. A.
Then we provide a detailed ablation study of our approach
in Sec. B. Finally, we introduce the process of generating
global stability and the architecture of our network in Sec. C
and Sec. D, respectively.

A. Analysis of Feature Detection and Matching
In this section, we show more qualitative results of key-

points detection and matching in comparison with previous
popular local features including SuperPoint [2], D2Net [3],
R2D2 [10], and ASLFeat [9].

A.1. Feature detection

For each method, we detect top 1k keypoints with
highest scores from the query images of Aachen v1.1
dataset [14,15] at the original resolution and visualize these
keypoints with different colors according to their scores
(high→low: 1-250 , 251-500 , 501-750 , 751-1000 ).
As shown in Fig. 1, we can see that:

• D2Net [3] and ASLFeat [9] favor regions with rich tex-
tures especially objects such as tress and pedestrians,
partially because D2Net and ASLFeat adopt the simi-
lar detection strategy: spatial locations with high val-
ues of the high-level features. As a result, they detect
many keypoints from objects e.g. sky, tree, car, pedes-
trian, which are not useful for long-term localization.

• R2D2 [10] detects keypoints almost uniformly from
the whole image due to its maximization of responses
in a fixed sliding window with size of 16×16. There-
fore, R2D2 [10] also detects a large number of key-
points from unstable objects.

• SuperPoint [2] is a good corner detector. As corners
also exist in objects e.g. sky, tree, car, pedestrian, Su-
perPoint [2] detects many keypoints from the afore-
mentioned unstable objects.

• Our detector is partially supersized by results of Super-
Point, so it favors corners as well. Because we rerank
the corners with the stability of semantic labels, our
method prefers to detect keypoints from stable objects
e.g. building, with more red keypoints from buildings.
Although we can see keypoints from unstable objects,
their scores are relatively smaller (with blue or yellow
colors).

• The distribution of keypoints detected by prior meth-
ods and our model indicates that without explicit se-
mantic labels, previous approaches don’t perform well
of selecting globally reliable keypoints although they
are trained to detect keypoints which have strong dis-
criminative ability.

A.2. Feature matching

We detect 4k keypoints for SuperPoint [2], R2D2 [10],
ASLFeat [9], and our method and visualize the in-
liers between query and reference images with illumina-
tion changes, season variations, dynamic objects in the
Aachen v1.1 dataset [14, 15]. From Fig. 2, we can see that:

• For image pairs with small illumination and season
changes, almost all methods could give many inliers.

• For image pairs with season changes or occlusions
from trees or dynamic objects e.g. car, SuperPoint,
R2D2, and ASLFeat give fewer inliers than our model.

• For extremely challenging image pairs with illumina-
tion changes, season variations, and high occlusions of
trees, almost all prior approaches fail to give enough
inliers, resulting in the failure of localization. How-
ever, our method is still able to find enough inliers
from robust regions. We analyze the reasons of im-
provements in Sec. B.

1



Group Method urban suburban park overcast sunny foliage mixed foliage no foliage low sun cloudy snow

C
SIFT [8] 56.9/63.9/70.2 37.8/45.3/55.4 20.0/24.4/31.7 36.1/42.6/50.5 30.9/36.3/43.6 32.7/38.2/45.7 35.5/42.2/51.4 59.5/67.5/74.7 43.7/50.8/59.2 43.0/49.6/58.3 46.1/54.2/63.1
AS [12] 81.0/87.3/92.4 62.6/70.9/81.0 45.5/51.6/62.0 64.1/70.8/78.6 55.2/62.3/71.3 58.8/65.3/73.9 59.2/67.5/77.4 83.3/88.9/94.6 65.8/73.4/82.8 71.6/77.6/84.2 73.0/81.0/90.5
CSL [17] 71.2/74.6/78.7 57.8/61.7/67.5 34.5/37.0/42.2 52.2/55.4/60.3 43.3/46.6/51.9 47.0/50.2/55.3 52.4/56.1/62.0 80.3/83.2/86.6 61.7/65.3/70.7 63.3/66.3/70.5 69.9/73.7/78.7

S VLM [18] 17.3/42.5/89.0 5.8/19.4/76.1 6.6/23.1/73.0 11.5/30.8/80.8 9.7/27.1/76.1 9.5/26.7/77.4 10.3/28.4/79.0 9.4/30.3/84.6 9.3/27.6/79.2 9.4/28.0/83.7 7.6/27.6/75.9
SSM [16] 88.8/93.6/96.3 78.0/83.8/89.2 63.6/70.3/77.3 79.1/84.9/89.7 69.2/75.4/81.3 73.4/79.1/84.2 75.1/81.8/87.9 90.9/94.5/97.1 78.5/84.5/90.1 86.4/90.5/92.9 84.1/89.8/94.6

L
SPP [2] 89.5/94.2/97.9 76.5/82.7/92.7 57.4/ 64.4/80.4 77.1/82.8/91.8 65.1/72.3/86.8 69.2/ 75.5/88.3 75.2/81.7/90.8 88.7/92.8/96.4 78.0/83.9/91.8 83.4/87.7/94.0 80.7/86.6/93.2
D2Net(MS) [3] 82.6/94.8/98.4 75.9/86.8/93.8 66.6/82.6/ 88.6 76.3/89.0/94.1 68.2/83.8/92.0 70.4/85.2/92.5 75.8/88.6/93.8 86.2/94.4/96.7 78.6/89.9/94.4 79.1/90.7/95.1 82.0/91.1/93.8
R2D2 [10] 89.7/96.6/98.3 76.1/83.8/89.0 64.4/72.1/76.5 79.9/87.0/90.6 70.3/78.3/83.2 74.1/81.2/85.6 75.7/84.1/87.9 86.6/93.3/95.3 77.8/85.7/89.3 84.1/90.0/92.5 79.8/87.6/91.1

M
PixLoc [20] 92.8/95.1/98.5 91.9/93.4/95.8 84.0 /85.8/90.9 90.3/92.2/96.2 85.3/88.8/94.0 87.1/89.9/94.7 90.5/91.9/95.1 95.1/95.7/96.8 91.2/92.3/94.8 93.9/94.8/97.4 91.6/92.3/94.0
AHM [4] 65.7/82.7/91.0 66.5/82.6/92.9 54.3/71.6/84.1 62.8/78.8/89.4 56.6/74.5/87.2 58.5/75.7/87.8 62.9/79.6/89.4 72.0/87.7/94.5 64.0/81.0/90.2 69.4/84.4/92.8 61.7/80.6/90.3
SPP+SPG [2, 11] 95.5/98.6/99.3 90.9/94.2/97.1 85.7/89.0/91.6 92.3/95.3/96.9 86.1/91.3/94.6 88.3/92.5/95.3 91.6/94.5/96.2 95.4/97.1/98.3 91.8/94.4/96.3 95.2/97.0/98.0 92.3/94.6/96.6

Ours 95.0/97.5/98.6 90.5/92.7/95.3 86.4/89.1/91.2 92.1/94.0/95.8 86.3/90.3/93.4 87.9/91.0/93.9 91.9/94.0/95.5 95.3/96.6/97.6 92.4/94.4/95.8 93.3/94.7/96.3 92.9/94.6/96.0

Table 1. Localization accuracy on the Extended CMU-Seasons dataset [13]. Results at error thresholds of
(0.25m, 2◦), (0.5m, 5◦), (5m, 10◦) are reported.

B. Ablation Study of Feature Detection and
Matching

In this section, we verify the efficacy of the proposed
semantic-aware detection (SD), semantic-aware description
(SS), and semantic-consistency (SF) losses by visualizing
the detection and matching results. The base model is
trained with results of SuperPoint [2] as supervision and a
general ap loss [5] for descriptor learning as R2D2 [10].
Our full model comprises SD, SS, and SF three compo-
nents.

B.1. Ablation study of detection

As in Sec. A.1, we visualize 1k keypoints with the high-
est scores and show them with different colors according
to their scores (high→low: 1-250 , 251-500 , 501-750 ,
751-1000 ). As shown in Fig. 1, we can see the effective-

ness of SD, SS, and SF in detail:

• Our base model performs closely to SuperPoint [2] (as
shown in Fig. 1) with high response to corners as the
detector is partially supervised with results of Super-
Point [2]. Meanwhile, the base model is also sensitive
to unstable objects e.g. sky, tree, pedestrian, and car.

• The SD loss (W/ SD) is the key to rerank the key-
popints. With SD loss, keypoints from unstable ob-
jects e.g. sky, car, pedestrian are suppressed. Key-
points from trees have lower score (with color of blue
or yellow) and keypoints from stable objects e.g. build-
ing are favored (with color of red).

• The SS loss doesn’t contribute to the detection process,
so it shows the similar results as the base model, which
again indicates that the importance of explicit semantic
labels to detection as discussed in Sec. A.1,

• The full model with SF incorporated performs better
than the model W/ SD, as it further enhances the ability
of our model in learning semantic-aware features.

B.2. Ablation study of feature matching

We additionally visualize the effectiveness of SD, SS, SF
losses in feature matching. From Fig. 5, we can see that:

• Benefiting from the corner detector and ap loss, the
base model is already able to give promising perfor-
mance in comparison with previous methods [2,9,10].

• The SD loss (W/ SD) marginally improves the matches
possibly because those reranked keypoints from sta-
ble objects don’t have strong discriminative ability by
purely adopting ap loss over all keypoints.

• The SS loss (W/ SS) effectively solves the limitation
of SD loss, as it augments the discriminative ability of
descriptors with semantics.

• The full model gives the best performance because it
combines the advantages of SD, SS, and SF losses.

C. Global stability map generation
During the training process, we utilize UperNet [1] with

ConvNet [7] as encoder trained on ADE20k [19] dataset
to provide semantic segmentation labels and high-level fea-
tures for semantic-wise and feature-wise guidance, respec-
tively. There are 150 labels in total which are categorized
into 4 groups as shown in Table 2. Since large-scale local-
ization happens mainly in outdoor environments, only sev-
eral objects such as sky, water, pedestrian, car, tree, plant,
and building are frequently used.

D. Network
Alike to SuperPoint [2], we adopt 8 times downsampling

to reduce the resolution of high-dimension features, making
the model efficient at test time. To increase the representa-
tion ability of our model, we introduce 3 ResBlocks [6].
Details of the network are shown in Fig. 3.
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Figure 1. Comparison of feature detection. We show top 1k keypoints with highest scores (high→low: 1-250 , 251-500 , 501-750 ,
751-1000 ) of prior SOTA local features including SuperPoint [2], D2Net [3], R2D2 [10], and ASLFeat [9]. They are more sensitive

to regions with rich textures even those from objects e.g. sky, tree, pedestrian, car, which are unstable for long-term localization. By
introducing the semantics for reranking keypoints, our model prefers keypoints from stable objects e.g. building.



SuperPoint R2D2 ASLFeat Ours

Figure 2. Comparison of feature matching. We show inliers between query and reference images from the Aachen v1.1 [14, 15] dataset
under challenges of illumination changes, season variations, and dynamic objects. Results of SuperPoint [2], R2D2 [10], ASLFeat [9],
and our model are visualized. Compared with prior methods, our model is able to produce more inliers even under extremely challenging
conditions when others fail to give enough inliers to guarantee the success of localization.



Category Semantics

Volatile

sky, mountain, curtain, water, sea, mirror, rug,
field, bathtub, stand, sand, sink, river, hill,
bench,light,dirt,land,fountain, swimming pool, waterfall,
lake

Dynamic person, automobile, boat, truck

Short-term tree, grass, plant, flower, palm, airplane, van, ship,
minibike, bike, shower

Long-term

wall, building, floor, ceiling, road, bed, window, cabinet,
sidewalk, ground, door, chair, painting, sofa, shelf, house,
armchair, seat, fence, rock, wardrobe, lamp, rail, cush-
ion, box, pillar, signboard, chest, counter, skyscraper, fire-
place, grandstand, path, stairs, runway, case, table, pillow,
screen, stairway, bridge, bookcase, toilet, book, counter-
top, stove, kitchen, computer, swivel, bar, arcade, hovel,
tower, chandelier, sunshade, streetlight, booth, television,
clothes, pole, bannister, escalator, ottoman, bottle, buffet,
poster, stage, conveyer, canopy, washer, toy, stool, cask,
basket, tent, bag, cradle, oven, ball, food, step, tank, trade
name, pot, dishwasher, screen, blanket, sculpture, hood,
sconce, vae, traffic light, tray, dustbin, plate, monitor, bul-
letin, glass, clock, flag

Table 2. Stability map of different labels. All semantic labels are
categorized into four groups denoted as Volatile, Dynamic, Short-
term, and Long-term according to their reliability in the visual lo-
calization task.
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Figure 3. Architecture of the network. We adopt 6 Convolution
layers with kernel size of 3×3 to generate high-level features with
8× downsampling (implementation by using stride of 2). Then 3
ResBlocks [6] are followed to further enhance the ability of the
model.



Base model W/ SD W/ SS Full

Figure 4. Ablation study of feature detection. We show top 1k keypoints with the highest scores (high→low: 1-250 , 251-500 ,
501-750 , 751-1000 ) of our base model, model with SD loss (W/ SD), SS loss (W/ SS) and the full model (with SD, SS, SF). The

base model is more sensitive to regions with rich corners as SuperPoint [2]. SD loss effectively mitigates this problem by introducing
semantic-aware detection loss. SS loss focus mainly on descriptor learning, so it gives similar results to the base model. The full model
additionally introduces SF loss, which further enhances the detection process.



Base model W/ SD W/ SS Full

Figure 5. Ablation study of feature matching. We show the inliers between query and reference images from the Aachen v1.1 [14, 15]
dataset under challenges of illumination changes, season variations and dynamic objects. Results of the base model, with SD loss (W/
SD), with SS loss (W/ SS) and the full model (with SD, SS, SF) are visualized. SD loss slightly improves the matching as it focus mainly
the detection process. SS loss effectively augments the matching accuracy by introducing semantic labels. Results of SS loss are further
improved by the full model, which has an additional SF loss to enhance the model’s ability of learning semantic-aware features.
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