
Supplemental Material of Stare at What You See: Masked Image Modeling
without Reconstruction

A. Linear Probing
We also perform linear probing by appending a linear

classifier after the final layer of the pre-trained model, fol-
lowing MAE [6]. We use a mini-batch size of 16384, and an
initial base learning rate of 0.025 for ViT-Base. We train the
linear classifier for 90 epochs. The learning rate is linearly
warmed up for the first 10 epochs, and decayed to zero by
a cosine learning rate schedule. We do not use mixup, cut-
mix, drop path, or color jittering, and set the weight decay
to zero. For other methods, we report the number from orig-
inal papers.

Model Epochs LP Acc.(%)

contrastive method
MoCov3 [4] 300 76.7
DINO [2] 400 78.2

MAE method
BEiT [1] 800 56.7
SimMIM [14] 800 56.7
MAE [6] 1600 68.0
CAE [3] 800 68.3
MVP [10] 300 75.4
MILAN [7] 400 78.9
BEiT v2 [9] 300 80.1
FD-CLIP [11] 300 80.3

Ours 200 79.9

Table 1. Comparison of the linear probing top-1 accuracy (LP
Acc.) on ImageNet-1K dataset. “Epochs” refer to the pre-training
epochs of various methods.

From the results, MaskAlign outperforms methods based
on contrastive learning, such as MoCov3 and DINO, and
masked modeling methods based on CLIP, such as MVP
and MILAN.

B. ADE20K Semantic Segmentation
We transfer our pre-trained backbone models to semantic

segmentation task on the ADE20K dataset [15]. Following
MAE, the ViT models pre-trained on ImageNet-1K dataset

serve as the backbone of UperNet [13], and are finetuned
together with the segmentation layers. We report the mean
intersection over union (mIoU) averaged over all semantic
categories.

Model Epochs mIoU(%)

contrastive method
MoCov3 [4] 300 47.3
DINO [2] 400 47.2

MAE method
BEiT [1] 800 45.7
MAE [6] 1600 48.1
CAE [3] 1600 50.2
PeCo [5] 300 46.7
MVP [10] 300 52.4
MILAN [7] 400 52.7

Ours 200 52.1

Table 2. Comparison of the semantic segmentation on ADE20K
dataset. “Epochs” refer to the pre-training epochs of various meth-
ods.

From the results, MaskAlign achieves comparable seg-
mentation performance with MVP, MILAN, but with much
fewer pre-training epochs.

C. ImageNet-9 Backgrounds Challenge
We add the ImageNet-9 [12] Backgrounds challenge

under linear probing setting. We follow the protocol of
AttMask [8] and report results on: Only-FG (OF), Mixed-
Same (MS), Mixed-Rand (MR), and Mixed-Next (MN),
No-FG (NF), and original.

MaskAlign has better robustness than MILAN. As Back-
ground has a higher probability of being masked and recon-
structed (due to SAS in MILAN), the removal of reconstruc-
tion makes the model focus more on the foreground.

References
[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:

Bert pre-training of image transformers. In ICLR, 2021. 1

1



Model OF MS MR MN NF Original

AttMask [8] 75.2 76.2 62.3 59.4 40.6 89.8
MAE [6] 81.3 77.8 66.3 64.0 38.6 91.9
MILAN [7] 89.2 87.1 77.9 74.7 46.8 96.2
Ours 87.7 87.2 78.6 76.6 51.9 96.4

Table 3. Comparison of the linear probing results on ImageNet-9
dataset.

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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