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Thanks for reading this document. In this supplementary
material paper, we will describe the detail of the CIMI4D
dataset in Appendix A, the cross dataset evaluation for
CIMI4D in Appendix B, and the experimental setup and
more results in Appendix C.

A. CIMI4D dataset

A.1. Coordinates

Coordinate Systems. We define three coordinate systems:
1) IMU coordinate system {I}: origin is at the pelvis joint
of the first SMPL model, and X/Y/Z axis is pointing to
the right/upward/forward of the human. 2) LiDAR Coor-
dinate system {L}: origin is at the center of the LiDAR,
and X/Y/Z axis is pointing to the right/forward/upward of
the LiDAR. 3) Global/World coordinate system {W}: the
scene’s coordinate we manually define. We use the right
subscript k, k ∈ Z+ to indicate the index of a frame, and
the right superscript, I or L or W (default to W ), to indicate
the coordinate system that the data belongs to. For exam-
ple, the 3D point cloud frames from LiDAR is represented
as PL = {PL

k , k ∈ Z+}

Coarse calibration. Before data capturing, the actor stands
facing or parallel to a large real-world object with a flat
face, such as a wall or a square column. His right/front/up
is regarded as the scene’s X/Y/Z axis direction, and the
midpoint of his ankles’ projection on the ground is set as
the origin. After the data are collected, we manually find
the first frame’s ground plane and the object’s plane, and
then calculate their normal vector g = [g1, g2, g3]

⊤ and
m = [m1,m2,m3]

⊤, respectively. The coarse calibration
matrix RWL from the LiDAR starting position to the world

coordinate {W} is calculated as:

RWL =


e1 e2 e3 0
m1 m2 m3 0.2
g1 g2 g3 h
0 0 0 1

 (1)

where [e1, e2, e3]
⊤ = m × g and h is the height of

the LiDAR from the ground. Based on the definition of
IMU coordinate system {I}, the coarse calibration ma-
trix RWI from {I} to {W} is defined as: RWI =[
(1, 1,−1)(2, 3, 1)(3, 2, 1)(4, 4, 1)

]
triad

A.2. Notation

We use the right subscript k, k ∈ Z+ to indicate the
index of a frame, and the right superscript, I or L or W
(default to W ), to indicate the coordinate system that the
data belongs to. For example, the 3D point cloud frames
from LiDAR is represented as PL = {PL

k , k ∈ Z+} and
the 3D scene is represented as S. MW

k indicates the k-th
frame in human motion M = (T, θ, β) in world coordi-
nate system, where T is the N × 3 translation parameter,
θ is the N × 24 × 3 pose parameter, and β is the N × 10
shape parameter. N represents the number of input tempo-
ral point cloud frames. We use the Skinned Multi-Person
Linear (SMPL) [8] body model Φ to map k-th frame’s mo-
tion representation Mk to its triangle mesh model, Vk, Fk =
Φ(Mk), where body vertices Vk ∈ R6890×3 and faces
Fk ∈ R13690×3.

A.3. Reconstruction Scene

In the research of human-scene interaction, we consider
that accurate scene reconstruction is vital for the method un-
derstanding. Previous works reconstruct scenes using depth
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Figure 1. CIMI4D provides high-quality 3D reconstruction of
RGB point cloud scenes.

cameras [3, 4, 12, 13] with much lower accuracy than Li-
DAR and cannot check large scenes. CIMI4D uses Trimble
X7 to scan 3D scene information and rebuild the precisely
measured scene in space. We provide 7 high-precision re-
construction scenes with a total point cloud amount of 40M,
as shown in Fig. 1.

A.4. Blending Optimization Loss

We utilize scene and physical constraints to perform a
blending optimization of pose and translation to obtain ac-
curate and scene-natural human motion MW annotation.
The following constraints are used: the limb contact con-
straint Llc encourages reasonable hand and foot contact
with the scene mesh without penetrating. The limb sliding
constraint Lls eliminates the unreasonable slippage of the
limbs during climbing. The smoothness constraint Lsmooth

makes the translation, orientation, and joints remain tempo-
ral continuity. The mesh to point constraints Lsp minimiz-
ing the distance between constructed SMPL vertices to the
point clouds of human body. Please refer to the supplemen-
tary material for detailed formulation of the constraints.

The optimization is expressed as:

L = λlcLlc + λlsLls + Lsmooth + λspLsp

M = argmin
M

L(M |TW , θI , RW ,S)
(2)

where λlc, λls, λsmooth, λsp are coefficients of loss terms.
L is minimized with a gradient descent algorithm that opti-
mize MW = (T, θ). MW is initialized according to Paper
Sec 3.3.

Limb contact Loss. This loss is defined as the distance
from a stable foot or hand to its nearest neighbor in the
scene vertices. First, we detect the foot and hand state based
on its movements. The movement is calculated based on
the set of vertices of hands and feet. One limb is marked
as stable if its movement is smaller than 3cm and smaller
than another limb (foot or hand)’s movement. We obtain the
contact environment near the stable limb through a neighbor
search. The limb contact loss is Llc = Llcfeet

+ Llchand
.

Llcfeet
=

1

l

l−1∑
j=1

∑
v∈V FSFj

1

|V FSFj |
∥vf − ṽf · pfj∥2 (3)

Llchand
=

1

l

l−1∑
i=1

∑
v∈V HSHi

1

|V HSHi |
∥vh − ṽh · phi∥2

(4)

where ṽf and ṽh is homogeneous coordinate of vf and vh.
V FSFj and V HSHi are the sets of the vertices of a stable
foot SF j and a stable hand SHi. The loss is average over
all frames of a sequence with length l. l represents a subset
of N during parallel training.

Limb sliding Loss. This loss reduces the motion’s slid-
ing on the contact surfaces, making the motion more nat-
ural and smooth. The sliding loss is defined as the dis-
tance of a stable limb over every two successive frames:
Lls = Llsfeet

+ Llshands
.

Llsfeet
=

1

l

l−1∑
j=1

∥E(V FSFj+1)− E(V FSFj )∥2 (5)

Llshands
=

1

l

l−1∑
i=1

∥E(V HSHi+1)− E(V HSHi)∥2 (6)

where E(·) calculates the center of the vertices list.

Smooth Loss. The smooth loss includes the translation
term Ltrans and the joints term Ljoints.

Lsmooth = λtransLtrans + λjointsLjoints (7)

The Ltrans smooths the trajectory T of human (the trans-
lation of the pelvis) through minimizing the difference be-
tween LiDAR and a human’s translation difference. The
smooth term is as follows:

Ltrans =
1

l

l−1∑
j=1

max(0, ∥TL
j+1 − TL

j ∥2 − ∥Tj+1 − Tj∥2)

(8)

where TL
j is the translation of LiDAR at k-th frame, and Tk

is the translation we optimized for. The Ljoints is the term
that smooths the motion of body joints in global 3D space,
which minimizes the mean acceleration of the joints. For
this loss, we only consider stable joints on the torso and the
neck. Let δsj = Js

j − Js
j−1 represent the difference of joints



Metrix Test
Train

LiDARHuman26M CIMI4D LidarHuman26M+CIMI4D

MPJPE LiDARHuman26M 79.31 264.04 82.40
CIMI4D 358.13 115.93 107.77

PMPJPE LiDARHuman26M 66.72 137.10 69.87
CIMI4D 222.11 86.38 80.61

PVE LiDARHuman26M 101.64 340.70 105.86
CIMI4D 422.65 136.83 126.83

ACCEL LiDARHuman26M 4.52 7.95 4.42
CIMI4D 12.39 2.59 2.81

PCK0.5 LiDARHuman26M 0.95 0.61 0.94
CIMI4D 0.50 0.90 0.92

Table 1. Cross-dataset evaluation for the 3D human pose estima-
tion task.

between consecutive frame. Ljoints is defined as follows.

Ljoints =
1

l

l−1∑
j=1

∥δsj+1 − δsj∥2 (9)

Since the static scenes are collected in Paper Sec 3.1,
we design a method to segment human point clouds as an-
notation data. For each frame of dynamic LiDAR output,
we manually register to the same coordinate system of the
IMU to obtain the RT matrix. Next, the human body in the
multi-frame dynamic scene is manually removed to gener-
ate a sparse static scene. For each frame of point cloud,
the points within the threshold range of the sparse scene are
eliminated to obtain the segmented human point cloud Pi.
For each segmented human point cloud Pi.
SMPL to point loss. For each estimated human meshes,
we use Hidden Points Removal (HPR) [5] to remove the
invisible SMPL vertices from the perspective of LiDAR.
Then, we use Iterative closest point (ICP) [10] to register
the visible vertices to P , which is segmented human point
clouds. We re-project the human body SMPL in the LiDAR
coordinate to select the visible human body vertices V ′. For
each frame, We use Lsp to minimize the 3D Chamfer dis-
tance between human points Pi and vertices V ′

i. For each
frame, the Lstp constraint is regularized with the following
equation:

Lsp =
1

|P|
∑
pi∈P

min
vi∈V ′

∥pi − vi∥22 +

1

|V ′|
∑

vi∈V ′

min
pi∈P

∥vi − pi∥22
(10)

B. Cross-dataset Evaluation
In this section, we evaluate the quality of CIMI4D

through cross-dataset evaluation. We have shown that the
LiDAR point cloud based approaches perform better in the
pose estimation tasks in the submitted paper. We use Li-
DARCap as the baseline method to evaluate the quality of
CIMI4D.

Evaluation metrics In this section and in Appendix C,
we report Procrustes-Aligned Mean Per Joint Position Er-
ror (PMPJPE), Mean Per Joint Position Error (MPJPE),
Percentage of Correct Keypoints (PCK), Per Vertex Er-
ror (PVE), and Acceleration error(m/s2) (ACCEL). Except
ACCEL and PCK, error metrics are measured in millime-
ters.

LiDARCap is trained based on the training sets of Li-
DARHuman26M [7], CIMI4D, and the two combined. And
then, it is evaluated based on the testing sets of LiDARHu-
man26M [7], CIMI4D. The results are depicted in Tab. 1.

As it is shown in Tab. 1, when LiDARCap was trained
on one dataset, it performed poorly on the other dataset.
Especially, when it is trained on LiDARHuman26M and is
tested on CIMI4D, its performance is worse than the op-
posite way. This indicates that the daily actives contained
in the LiDARHuman26M are not sufficient for MoCap al-
gorithms to learn climbing actions in-depth. Further, as it
is shown in the table, if LiDARCap was trained based on
the combination of the two datasets, its performance on the
two dataset is significantly increased. This indicates that
CIMI4D is a necessary addition to the current human mo-
tion datasets.

For the PMPJPE metric, after being trained on both
datasets, the error of LiDARCap on LiDARHuman26M
increases compared to the model trained only on Li-
DARHuman26M. This suggests LiDARHuman26M com-
plements CIMI4D better than the opposite. Similar conclu-
sions can be drawn from the results of other metrics that
CIMI4D is more challenging with more diverse data, which
yields stronger generalizability than the LiDARHuman26M
dataset.

C. Tasks and Benchmarks
C.1. Pose Estimation Benchmark

The models used to evaluate the pose estimation tasks
are listed as follows.

1. LiDARCap [7], which estimates human pose based on
LiDAR point clouds. It is trained based on the Li-
DARHuman26M dataset.

2. LiDARCap⋆, which is trained based on the CIMI4D
dataset.

3. P4Transformer⋆ [1], which uses a 4D convolution
transformer networks for spatio-temporal modeling in
point cloud sequences. The model is trained using the
CIMI4D dataset.

4. VIBE [6], a RGB video-based algorithm. It is trained
based on its original dataset.

5. VIBE⋄, it is fine-tuned based on the CIMI4D dataset.



Figure 2. Motion Prediction CVAE Architecture. The inputs
of encoder are the previous pose θ0 with translation T0 and the
current pose θ1 with translation T1 during training. The decoder
reconstructs θ̂1 with translation T̂1 by sampling the encoder distri-
bution Z.

6. MAED [11], an RGB based algorithm which is trained
based on its original dataset.

7. MAED⋄, fine-tuned based on the CIMI4D datasets.

8. DynaBOA [2], an RGB based algorithm which is
trained based on its original dataset.

9. PROX [4], a scene-aware pose estimation algorithm
based on RGB images.

10. PROX⋄, it is fined tune based on the CIMI4D dataset.
PROX relies on the 2D-joints provided by Open-
Pose, which performs poorly on CIMI4D. We improve
PROX through using the ground-truth orientations of
root hip joint as input.

11. LEMO [13], a scene-aware pose estimation algorithm
based on RGB images.

Training Details. For LiDARCap [7], we retrain the model
on CIMI4D dataset using the PyTorch framework for 200
epochs with Adam optimizer and the batch size is set to be
6. The learning rate and decay rate are set to be 1 × 10−4.
One NVIDIA GeForce RTX 3090 Graphics Card is utilized
for training. P4Transformer [1] is retrained on CIMI4D
dataset, and the hyperparameters are set to be the same as
LiDARCap. For the other algorithms, we use their default
settings when training or fine-tuning.

Pose Estimation Models based on LiDAR and scene are
significantly better than models based on RGB, illustrating
the importance of 3D information for Human-scene under-
standing.

C.2. Motion Prediction and Generation

The motion prediction task aims to predict the pose and
the translation of a person in the future frames based on
history frames and current frames. To evaluate the perfor-
mance of the motion prediction task, we devise a simple
baseline. Its architecture is depicted in Fig. 2, our motion

Figure 3. Motion Generation CVAE Architecture. The inputs
of encoder are the pose θ with translation T and the rock points C
during training. The decoder reconstructs θ̂ with translation T̂ by
sampling the encoder distribution Z.

prediction baseline used a Conditional Variational Autoen-
coder (CVAE) motivated by HuMoR [9]. The encoder con-
sists of 5-layer MLPs with ReLU activation function, while
the decoder are 4-layer MLPs with ReLU activation. We
take the KL divergence to regularize the distribution of the
encoder output to be near the Gaussian distribution. The
learning rate, optimizer, and batch size are the same as the
pose estimation tasks. And we experiment on original Hu-
MOR too.

For the motion generation task, the simple architecture
of the baseline is demonstrated in Fig. 3. In general, its
neural network is the same as motion prediction except that
the inputs and outputs are different. The learning rate and
batch size are the same as the motion prediction task.

References
[1] Hehe Fan, Yi Yang, and Mohan S. Kankanhalli. Point 4d

transformer networks for spatio-temporal modeling in point
cloud videos. 2021 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 14199–14208,
2021. 3, 4

[2] Shanyan Guan, Jingwei Xu, Michelle Z He, Yunbo Wang,
Bingbing Ni, and Xiaokang Yang. Out-of-domain human
mesh reconstruction via dynamic bilevel online adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2022. 4

[3] Vladimir Guzov, Aymen Mir, Torsten Sattler, and Gerard
Pons-Moll. Human poseitioning system (hps): 3d human
pose estimation and self-localization in large scenes from
body-mounted sensors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4318–4329, 2021. 2

[4] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas,
and Michael J. Black. Resolving 3d human pose ambiguities
with 3d scene constraints. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, pages 2282–2292.
IEEE, 2019. 2, 4

[5] Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of
point sets. In ACM SIGGRAPH 2007 papers, pages 24–es.
2007. 3

[6] Muhammed Kocabas, Nikos Athanasiou, and Michael J.
Black. Vibe: Video inference for human body pose and



shape estimation. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5252–5262,
2020. 3

[7] Jialian Li, Jingyi Zhang, Zhiyong Wang, Siqi Shen, Chenglu
Wen, Yuexin Ma, Lan Xu, Jingyi Yu, and Cheng Wang. Li-
darcap: Long-range marker-less 3d human motion capture
with lidar point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 20502–20512, 2022. 3, 4

[8] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. Smpl: A skinned multi-
person linear model. ACM Trans. Graph., 34(6):248:1–
248:16, Oct. 2015. 1

[9] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J. Guibas. Humor: 3d human
motion model for robust pose estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 11488–11499, October 2021. 4

[10] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun.
Generalized-icp. In Robotics: science and systems, vol-
ume 2, page 435. Seattle, WA, 2009. 3

[11] Ziniu Wan, Zhengjia Li, Maoqing Tian, Jianbo Liu, Shuai Yi,
and Hongsheng Li. Encoder-decoder with multi-level atten-
tion for 3d human shape and pose estimation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 13033–13042, 2021. 4

[12] Siwei Zhang, Qianli Ma, Yan Zhang, Zhiyin Qian, Taein
Kwon, Marc Pollefeys, Federica Bogo, and Siyu Tang. Ego-
body: Human body shape and motion of interacting people
from head-mounted devices. In Shai Avidan, Gabriel Bros-
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