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1. Qualitative Result Videos
We include a few videos rendered by our model and the

baseline models in the supplementary zip file as a better
demonstration of the qualitative performance comparison.

2. Implementation Details
The details of the mask prediction module (Fig. 1), de-

formation prediction module (Fig. 2), hyper coordinate pre-
diction module (Fig. 3) and canonical NeRF (Fig. 4) module
are illustrated in the respective figure. Positional encoding
is performed on spatial coordinates x, x′, viewing direc-
tion ωo and surface normal n. Different encoding widths
and annealing widths are used for different input as shown
in Tab. 1. The Gaussian applied to the weights w′ for mask
volumetric rendering has an exponentially decreasing stan-
dard deviation β from 1 to 0.1 during the first 30k iterations.
Then it stays constant at 0.1 for the rest of the training.

2.1. Details of Ref-NeRF Experiments

We use the official integrated Ref-NeRF [2] code from
Multi-NeRF [1]. To accommodate our dynamic specular
dataset, we slightly adjust the scene offset and scaling logic
to ensure the scene is well centered and bounded.

2.2. Parameter and Training Time

The full model contains 1.45M parameters, compared to
the 1.30M parameters of the baseline model. The experi-
ment with 480x270 resolution videos takes 6 hours to train
on 4 RTX A5000 GPUs, compared to the 5 hours training
time of the baseline model.
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Figure 1. Architecture of the mask prediction module.

width anneal delay iter. inc. iter. inc. func.
x to mask 4 Yes 0k 50k linear
x to deformation 4 Yes 0k 50k linear
x to hyper coord. 6 No N/A N/A N/A
x to color branch 4 Yes 50k 50k linear
x′ to NeRF 8 No N/A N/A N/A
w to NeRF 1 No N/A N/A N/A
ωo to color branch 4 No N/A N/A N/A
n to color branch 4 Yes 10k 2k linear

Table 1. Details of the positional encoding and annealing of each
input. “Width” indicates the highest k in sin(2kπx) sequence.
“Anneal” indicates whether annealing coefficient zj(τ) for posi-
tional encoding is used. If annealing is used, “delay iter.” is the
number of iterations where τ stays 0 at the start of the training.
“inc. iter.” and “inc. func.” are the number of increasing iterations
and function after the delay.
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Figure 2. Architecture of the deformation field prediction module.
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Figure 3. Architecture of the hyper coordinates prediction module.

3. Ablation Qualitative Results
We present the qualitative comparison between the full

and ablation versions of our models. The comparison be-
tween our NeRF-DS model and the ablation version with-
out surface-aware dynamic NeRF is shown in Fig. 5. The
comparison between our NeRF-DS model and the ablation
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Figure 4. Architecture of the canonical NeRF module.

version without mask guided deformation field is shown
in Fig. 6.

4. Additional Experiment Results
We use delayed positional encoding for the spatial loca-

tion x and sharp volumetric weights w′
i for the mask render-

ing. In this section, we present additional ablation experi-
ments to determine the best hyper-parameters for these two
techniques.

We evaluate the performance of the NeRF-DS model on
the “Sheet” scene in the dynamic specular dataset, under
different annealing strategy of the positional encoding for
the observation space spatial coordinate x before it is fed
to the NeRF color branch. Specifically, we evaluate the re-
construction performance with different schedules for the
annealing coefficient τ of the jth term in the position en-
coding as shown in:

zj(τ) =
1− cos(π · clamp(τ − j, 0, 1))

2
. (1)

We present the quantitative results in Tab. 2. Supported by
the quantitative results, we choose to delay the use of x
in the NeRF color branch for the first 50k iterations, and
slowly increase the bandwidth to a maximum of 4 during
the next 50k iterations.

We also evaluate the performance of the NeRF-DS
model on the “Sheet” scene in the dynamic specular dataset,
with different sharp weights w′

i for mask rendering. Partic-
ularly, we evaluate the reconstruction performance with dif-
ferent schedules for decreasing standard deviation β in the
Gaussian filter N (kmax, β) applied to weight wi based on
its ray distance ki:

w∗
i = wi · P (ki|N (kmax, β)), w

′
i = w∗

i /(
∑
j

w∗
j ). (2)

We present the quantitative results in Tab. 3. Supported
by the quantitative results, we choose to gradually decrease
standard deviation for sharp mask weights from 1 to 0.1 dur-
ing the first 30k iterations of the training.

Additionally, we evaluate the performance of the NeRF-
DS model on the “Sheet” scene in the dynamic specular

Positional Encoding Annealing MS-SSIM↑ PSNR↑ LPIPS↓
constant 4 0.911 25.4 0.118
increase to 4 for 50k iter. 0.915 25.7 0.119
delay 10k, increase to 4 for 50k iter. 0.914 25.6 0.121
delay 50k, increase to 4 for 50k iter. 0.918 25.7 0.115
delay 100k, increase to 4 for 50k iter. 0.917 25.7 0.117
without x 0.913 25.5 0.120

Table 2. Quantitative results on different annealing strategy for
adding observation space coordinate x to the color branch of the
canonical NeRF. Experiments are performed on the “Sheet” scene.
The best and second best results are color coded.

dataset, with surface normal n calculated from different
spaces. The surface normal in the observation space used
in our main results are warped from the surface normal in
the canonical space to ensure cross frame consistency, i.e.
n = R⊤n′. We compare the results with the model us-
ing surface normal calculated in the canonical space and
the surface normal directly calculated in observation space
as shown in Tab. 4. The canonical space normal means
n = n′. The observation space normal means the normal
is supervised by the gradient of density with respect to the
spatial coordinate in observation space:

n̂ = − ∇σ(x)
∥∇σ(x)∥ , (3a)

Lnorm =
∑

i wi∥n− n̂∥2. (3b)

Supported by the quantitative comparison, we choose to use
the surface normal warped from the canonical space for the
better consistency over time.

To demonstrate that our model has comparable perfor-
mance to the baselines on non-specular dynamic scenes, we
also present the experiment results of our model in the re-
leased scenes in the HyperNeRF dataset in Tab. 5. The re-
sults shown for Nerfies [2] and HyperNeRF [3] are taken
from the original paper, while the performance of our model
is reproduced on the same data. Please note that due to our
limited hardware (compared to the 4 TPU used in the origi-
nal paper), our model trained on this HyperNeRF [3] dataset
is using 1/10 of the batch size and 10 times the number
of iterations. The performance comparison in this way is
slightly in our disadvantages, as our reproduced HyperN-
eRF [3] models under this setting perform worse than the
reported models.

5. Additional Qualitative Analysis
To further analyse the influence of the surface normal

input on the rendering, we present a qualitative case study.
Taking the early stage result of NeRF-DS (w/o mask) as an
example (Fig. 8), the norms predicted for the middle part of
the plate in two frames are different. With this input, our
NeRF-DS model can render different reflected colors of the
same surface. However, HyperNeRF fails to recognize the
surfaces in the two frames to be the same and renders severe
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Figure 5. Qualitative comparison between our full model (NeRF-DS) and the ablation version without the surface-aware dynamic NeRF
(NeRF-DS w/o Mask).
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Figure 6. Qualitative comparison between our full model (NeRF-DS) and the ablation version without the mask guided deformation field
(NeRF-DS w/o Surface).

Standard Deviation Schedule MS-SSIM↑ PSNR↑ LPIPS↓
1 to 0.01 for 30k iter. 0.916 25.8 0.122
1 to 0.03 for 30k iter. 0.905 25.3 0.125
1 to 0.1 for 30k iter. 0.918 25.7 0.115
1 to 0.3 for 30k iter. 0.917 25.7 0.120
without sharping 0.909 25.6 0.126

Table 3. Quantitative results on different schedule for decreasing
the standard deviation β for the Gaussian filter to sharp the mask
weights. Experiments are performed on the “Sheet” scene. The
best and second best results are color coded.

geometric artifacts. Additional masks can further suppress
the geometric artifacts, but our ablation study suggests that

Surface Normal MS-SSIM↑ PSNR↑ LPIPS↓
Warped from canonical space 0.918 25.7 0.115
Canonical space normal 0.913 25.5 0.119
Observation space normal 0.913 25.6 0.117

Table 4. Quantitative results on types of surface normal n used.
Experiments are performed on the “Sheet” scene. The best and
second best results are color coded.

the surface normal alone also contributes significantly to the
performance (20.3% LPIPS improvement from baseline).
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Figure 7. A snippet of the dynamic specular dataset for both cameras in 8 scenes. The training camera video is shown on the top and the
test camera video is shown on the bottom.

Printer Broom Chicken Banana Mean
PSNR↑ PSNR↑ PSNR↑ PSNR↑ PSNR↑

Nerfies [2] 20.0 19.3 26.9 23.3 22.4
HyperNeRF [3] 20.0 20.6 27.6 24.3 23.1
NeRF-DS (Ours) 21.0 19.6 27.9 22.8 22.8

Table 5. Performance on non-specular HyperNeRF [3] dataset.

6. Dynamic Specular Dataset Details

The dataset consists of 8 scenes of various dynamic spec-
ular objects in everyday environments. Two rigidly con-

nected cameras are used to capture the scenes for 480x270
resolution. Different types of objects and surfaces are used
as shown in Tab. 6. A snippet of the dataset is shown
in Fig. 7.
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Figure 8. A case study on how different surface norms can guide
rendering different reflected colors.

Scene Name # frames Object Attribute
Basin 668 Curved+Flat, Metallic
Plate 424 Curved+Flat, Plastic, Colored
Sheet 846 Soft, Metallic, Non-Rigid Deformation
Sieve 584 Curved, Metallic, Porous Bottom
Bell 881 Slightly Curved, Metallic
Cup 807 Curved+Flat, Metallic
Press 487 Flat, Metallic
2 Cups 437 Curved+Flat, Metallic, 2 Objects

Table 6. Details of each scene in the dynamic specular dataset.
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