
PlenVDB: Memory Efficient VDB-Based Radiance

Fields for Fast Training and Rendering

Supplementary Material

A Overview

In Sec.B, we give more details about VDB. In Sec.C, we describe more implementation details of our
PlenVDB. In Sec.D, we present experiments on more datasets. In Sec.E, we show more rendered
images for visualization.

B VDB

Figure 1: The 1D and 2D illustrations of OpenVDB data structure. Left: A VDB with one RootN-
ode(yellow), three InternalNodes(red and blue) and three LeafNodes(green). ValueMask denotes
whether it is active, and ChildMask denotes whether it is a child node or tile(gray). Only tiles and
voxels(brown) have values. The Accessor has a capacity of three and will cache nodes visited during
random access. The RootNode is implemented by a hash map and can be virtually infinite, while the
InternalNode and LeafNode are dense. Right: An example of representing the word ”VDB”.

If interested in VDB, we refer the reader to the original paper[Mus13] for more details. Here we
just introduce the main terminology and the relevant advantages of our task.

B.1 OpenVDB

OpenVDB is an open-source C++ library of the original VDB data structure. The data are stored in
voxels and tiles, and a tile uses one value to represent a small dense grid where the voxels are sharing
the same value and state. The state can be active or inactive, indicating whether the corresponding
value is interesting or not. In our task, if a voxel is inactive, this coordinate will be regarded as empty
space. Basically, OpenVDB is a four-layer B+ tree that consists of LeafNodes, InternalNodes, and
RootNodes. In the left of Fig.1, from the bottom up, the fourth level is composed of LeafNodes
and each LeafNode contains 8× 8× 8 voxels. The third level is composed of InternalNodes and each
contains 16×16×16 LeafNodes. The second level is also composed of InternalNodes and each contains
32× 32× 32 InternalNodes. The top-most level is only one RootNode that can accommodate virtually
infinite InternalNodes, thus covering the whole coordinates in 3D space. For InternalNode, there are

1



two masks(ChildMask and ValueMask) that indicate if it is a child node or a tile, and if the tile
value is active or inactive. For LeafNodes, only one ValueMask is available for judging the state. The
illustrations are drawn in Fig.1.

Since OpenVDB has fixed depth as 4, random access can be very fast(on average constant time).
Additionally, OpenVDB designs an Accessor for high performance sequential access which enables
fast neighboring nodes queries. For example, in Fig.1, after visiting the leftmost voxel, the Accessor
caches all visited nodes. While querying the adjacent voxel, the OpenVDB checks the nodes cached in
the Accessor bottom-up. Because of spatial proximity, the first check to Accessor usually hits with a
large probability, thus dispensing with another top-down tree traversal.

B.2 NanoVDB

Despite the performance advantages of OpenVDB, it does not support GPUs. To address this limi-
tation, NanoVDB offers C++ and C99 implementation of a VDB tree that runs on both CPUs and
GPUs. The only drawback is that the topology is assumed to be static. But it is also due to this
assumption, the VDB tree can be serialized into a contiguous block of memory, contributing to better
performance on access and storage(See Fig.2).

Figure 2: The illustration of NanoVDB. Compared with OpenVDB, NanoVDB serialized all nodes into
a contiguous memory block. As the topology is assumed to be static, the size of the memory block can
be pre-calculated from the OpenVDB data structure. To locate different types of nodes, there are four
pointers Roots, Uppers, Lowers, Leafs pointing to the first(source) node of each layer, respectively.

C Implementation Details

Here we review the PlenVDB in Fig.3. We encapsulate the PlenVDB with three general VDBs for
training: DataVDB, GradVDB and (Adam)OptVDB. And only DataVDB is used for rendering.

C.1 Backward

In backward pass, the gradients calculated from the loss function and the chain law will be accumulated
into the GradVDB. We call this approach Coordinate-driven Modification, which is described in Alg.1.
While NanoVDB does not provide us with APIs to modify voxel values in VDB directly, the only
way is to get the corresponding non-const voxel pointer and apply SetValue function. Given an index
coordinate, we can access the non-const leaf pointer with the corresponding offset by a coordinate-
driven method in Alg.1.

2



Figure 3: The overview of the PlenVDB.

Algorithm 1 Coordinate-driven Modification

Given the GradVDB Gvdb, coordinate c, new value v and the first non-const leaf pointer Leafs
acc← getAccessor(Gvdb)
Do acc.getV alue(c) to cache nodes
if the leaf including c is cached then
CLeafd ← acc.getLeafNode()
det← PtrDiff(CLeafd, const(Leafs))
Leafd ← PtrAdd(Leafs, det)
offset← Leafd.CoordTooffset(c)
Leafd.setV alueOnly(offset, v)

end if

C.2 Step

In one step of the optimizer, PlenVDB will first update the OptVDB by GradVDB, and then modify the
data in DataVDB. Different from the modification method in backward, we determine the total number
of voxels based on the number of LeafNodes, and then update each location by using Coordinate-free
Modification, which is described in Alg.2.

D Additional Datasets

In this section, we evaluate our PlenVDB on three additional inward-facing datasets. For fairness, we
choose DVGO as our baseline and keep all the hyper-parameters the same.

NSVF-Synthetic [LGL+20] consists of eight scenes, and each scene has 200 views for training
and 100 views for testing. Every image has 800×800 resolution. BlendedMVS [YLL+20] consists
of four scenes, and each scene has one-eight views for testing. Every image has 768×576 resolution.
Deepvoxels [STH+19] consists of four simple Lambertian objects, and each scene has 479 views for
training and 1000 views for testing. Every image has 512×512 resolution.

The comparisons on the training time, rendering time(FPS), model size and image quality(PSNR)
are listed in Tab.1, Tab.2 and Tab.3. We find that for some scenes, our PlenVDB achieves slightly
better PSNR, while the others are worse. The reason is that for smaller model size, we set voxels
masked by the MaskGrid to the background value (See Fig.4). Here the MaskGrid is same as the
DVGO’s, which is used to pre-filter uninteresting sampled points. But the points on the boundaries
of the MaskGrid are difficult to handle: they will influence the trilinear interpolated values of the

3



Algorithm 2 Coordinate-free Modification

Given the first non-const leaf pointer Leafs, new value v and the number of LeafNodes nLeafCount

Choose n ∈ [0, nLeafCount− 1]
nleaf ← n >> 9
nvox← n & 512
Leafd ← Leafs + nleaf
if leafd.isActive(nvox) then
Leafd.setV alueOnly(nvox, v)

end if

Figure 4: The information loss caused by the merging operation. Note that the background value is
higher than the values in the MaskGrid.

sampled points. Therefore, setting them to background value may cause information loss, or make the
model more robust.

Table 1: Experimental Results on NSVF-Synthetic.

Metrics Methods Bike Lifestyle Palace Robot Spaceship Steamtrain Toad Wineholder

Training Time ↓ DVGO 4:01 4:12 4:03 4:39 7:13 3:21 4:00 3:58
PlenVDB 9:53 11:12 13:44 11:33 13:39 10:54 11:57 10:52

FPS ↑ DVGO 5 4 4 5 5 5 5 5
PlenVDB 39 20 17 42 22 25 39 24

Model Size ↓ DVGO 201 203 200 201 201 203 201 201
PlenVDB 11 13 23 12 20 28 30 10

PSNR ↑ DVGO 38.15 33.72 34.31 36.27 37.54 36.44 32.98 30.22
PlenVDB 38.08 33.72 34.30 36.25 37.53 36.42 32.99 30.20

E Additional Rendered Images

Though we do not focus on the improvement of rendered quality, our method reconstructs more details
than the PlenOxels and PlenOctree, and has comparable quality with DVGO (See Fig.5 and Fig.6).
Moreover, we present the rendered images of the other three datasets in Fig.7, Fig.8, Fig.9 and Fig.10.

4



Table 2: Experimental Results on BlendedMVS.

Metrics Methods Character Fountain Jade Statues

Training Time ↓ DVGO 4:19 4:37 4:29 4:27
PlenVDB 12:05 13:24 12:46 12:52

FPS↑ DVGO 7.13 5.30 5.12 5.55
PlenVDB 26.91 18.16 13.77 16.93

Model Size ↓ DVGO 203 202 201 202
PlenVDB 26 15 26 17

PSNR↑ DVGO 30.26 28.38 27.70 26.12
PlenVDB 30.27 28.37 27.69 26.17

Table 3: Experimental Results on DeepVoxels.

Metrics Methods armchair cube vase greek

Training Time↓ DVGO 4:41 4:24 4:54 4:31
PlenVDB 10:44 10:07 11:24 11:57

FPS↑ DVGO 12 12 12 13
PlenVDB 41 50 50 50

Model Size↓ DVGO 202 202 203 203
PlenVDB 29 56 34 46

PSNR↑ DVGO 48.36 43.25 41.85 48.53
PlenVDB 48.32 43.23 41.87 48.55

References

[LGL+20] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural
sparse voxel fields. NeurIPS, 2020.

[Mus13] Ken Museth. Vdb: High-resolution sparse volumes with dynamic topology. ACM Trans.
Graph., 2013.

[STH+19] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and
Michael Zollhöfer. Deepvoxels: Learning persistent 3d feature embeddings. In CVPR, 2019.

[YLL+20] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and
Long Quan. Blendedmvs: A large-scale dataset for generalized multi-view stereo networks.
CVPR, 2020.

5



Figure 5: Qualitative Results on test views from NeRF-Synthetic dataset.

6



Figure 6: Qualitative Results on test views from NeRF-Synthetic dataset.

7



Figure 7: Qualitative Results on test views from NVSF-Synthetic dataset.

8



Figure 8: Qualitative Results on test views from NVSF-Synthetic dataset.

9



Figure 9: Qualitative Results on test views from Blended-MVS dataset.

10



Figure 10: Qualitative Results on test views from DeepVoxels dataset.

11


	Overview
	VDB
	OpenVDB
	NanoVDB

	Implementation Details
	Backward
	Step

	Additional Datasets
	Additional Rendered Images

