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1. Appendix

In this appendix, we present more details about the train-
ing process and loss functions in 1.1 and 1.2, network ar-
chitecture in 1.3, as well as more analysis and visualiza-
tions for better understanding in 1.4.

1.1. Loss Functions

We present detailed loss functions for better readabil-
ity. First, Lietrieve and Lpox are used across all three
stages. Second, to learn mask representations from coarse
boxes [16] and fine mask annotations [9, 15, 21, 23, 25],
UNINEXT uses £PoXI05% in the first stage and Loagx in
the next two stages respectively. Finally, to associate in-
stances on different frames [13, 23, 24], UNINEXT addi-
tionally adopts Lembeq in the last stage.

Lyetrieve- Given the raw instance-prompt matching
score s, the normalized matching probability p is computed
as p = o(s), where o is sigmoid function. Then L, ctrieve
can be written as the form of Focal loss [8].

Eretrieve(pt) = —Oé[(l - pt)’Y log(pt) (l)
if matched

Pt = P . (2)
1—p otherwise.

~ and « are 2 and 0.25 respectively.
Ly,ox- Following DETR-like methods [2,
sists of two terms, GIoU Loss [14] and ¢; loss:

1, Lpox con-

Ebox(b7 l;) = )\giouﬁgiou(ba i)) + )\Ll Hb - ZA)” (3)

Ac(b,b) — U(b,b)
Ac(b,b)

Legiou(b,b) = 1 — IoU (b, b) + . @)

where A¢(b, b) is the area of the smallest box containing b
and b. U(b, b) is the area of the union of b and b.
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L mask. For datasets with mask annotations [9, 15,21,
,25], Focal Loss [8] and Dice Loss [10] are adopted.

‘Cmask(ma m) = )\focalﬁfocal(m7 7’?7/) + )\dice‘cdice(ma m)

. )
mm +

Laice(m,m) =1 — ———, 6
dice (112, 710) ] (6)
where m and m are binary GT masks and predicted masks
after sigmoid activation respectively.

L£boxinst  Eor Objects365 [16] without mask annota-
tions, UNINEXT uses Projection Loss and Pairwise Affin-
ity Loss like BoxInst [ 8], which can learn mask prediction
only based on box-level annotations.

EEnogfsifSt (b, m) = ‘Cproj (b, m) + »Cpairwise(ba m) (7)
»Cproj (b, Th) :Edice(projx(b)7 projx(m))+
. o (®)
Laice(projy (b), projy (1m)).
1
‘Cpairwise = _N Z IL{SQZT} 10g P(ye = 1) (9)
e€EL;n

P(ye =1) =My - ey + (1 — 1y 5) - (1 — 1), (10)

Se = S(Ci,]ﬁcl#k) = exp (‘W) ) (11)
where y. = 1 means the two pixels have the same ground-
truth label. S, is the color similarity of the edge e. ¢; ; and
¢,k are respectively the LAB color vectors of the two pixels
(i,7) and (I, k) linked by the edge. 6 is 2 in this work.

Lembed- UNINEXT uses contrastive loss [20] to train
discriminative embeddings for associating instances on dif-
ferent frames.

Lembed = log[1 + ZZexp(v k™ —v-kT)], (12
Kkt k-

where k™ and k™~ are positive and negative feature embed-
dings from the reference frame. For each instance in the key
frame, v is the feature embedding with the lowest cost.
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Table 1. Details in training. Step is the time to reduce the learning rate.

Stage ‘ Task ‘ Dataset Sampling Weight Batch Size Short Long ‘ Num GPU Lr Max Iter Step

I | OD&IS |  Objects365[16] 1 2 480 ~ 800 1333 | 32 0.0002 340741 312346
OD&IS COCO [9] 1 2 480 ~ 800 1333

I REC&RES RefCOCO/g/+[12,25] 1 2 480 ~ 800 1333 16 0:0002 91990 76658
LaSOT [4] 0.20 2 480 ~ 800 1333
GOTI10K [0] 0.20 2 480 ~ 800 1333
SOT&VOS TrackingNet [11] 0.20 2 480 ~ 800 1333
Youtube-VOS [21] 0.20 2 320 ~ 640 768
COCO [9] 0.20 2 480 ~ 800 1333
BDD-obj-det [24] 0.18 2 480 ~ 800 1333
BDD-box-track [24] 0.72 2 480 ~ 800 1333

III MOT&MOTS BDD-inst-seg [24] 0.02 5 480 ~ 800 1333 16 0.0001 180000 150000
BDD-seg-track [24] 0.08 2 480 ~ 800 1333
Youtube-VIS-19 [23] 0.34 4 320 ~ 640 768
VIS OVIS [13] 0.17 2 480 ~ 800 1333
COCO [9] 0.51 2 480 ~ 800 1333
R-VOS Ref-Youtube-VOS [15] 0.33 2 320 ~ 640 768
RefCOCO/g/+ [12,25] 0.67 2 480 ~ 800 1333
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Figure 1. Better view in color on screen.

1.2. Training Process

The detailed hyperparameters during training are shown
in Tab 1. The whole training process consists of three
stages. In each stage, the StepLR learning rate scheduler
is adopted. The learning rate drops by a factor of 10 af-
ter the given steps. For multi-dataset training, we follow
the implementation of Detic [27], which randomly sam-
ples data from different tasks and then computes them on
different GPUs in one iteration. Besides, the multi-scale
training technique is used across all datasets in all stages.
Take the pre-training on Objects365 [16] as an example,
the original images are resized such that the shortest side

on Youtube-VOS [21], Youtube-VIS-2019 [23], and Ref-
Youtube-VOS [15]. A lower resolution with the shortest
side ranging from 320 to 640 and the longest side not ex-
ceeding 768 is applied to these datasets [15,21,23], follow-
ing previous works [3, 19,20].

Specifically, in the first stage, the model is pretrained
on Objects365 [16] for about 340K iterations (12 epochs)
and the learning rate drops on the 11th epoch. In the
second stage, we finetune UNINEXT on COCO [9] and
RefCOCO/g/+ [12, 25] jointly for 12 epochs. In the
third stage, UNINEXT is further finetuned for diverse
video-level tasks. To guarantee balanced performance on
various benchmarks, we set the data sampling ratios as
(SOT&VOS):(MOT&MOTS):VIS:R-VOS = 1:1:1:1. For
each task, 45K iterations are allocated, thus bringing 180K
iterations in total for the third stage. Besides, to avoid for-
getting previously learned knowledge on image-level tasks,
we also generate pseudo videos from COCO [9] and Re-
fCOCO/g/+ [12,25] and mix them with training data of
VIS [13,23] and R-VOS [15] respectively.

1.3. Network Architecture

To transform the enhanced visual features F, and prompt
features FZ’, into the final instance predictions, an encoder-
decoder Transformer architecture is adopted. Based on the
original architecture in two-stage Deformable DETR [29],
UNINEXT makes the following improvements:

¢ Introducing a mask head for segmentation. To pre-
dict high-quality masks, UNINEXT introduces a mask
head [17] based on dynamic convolutions. Specifi-
cally, first an MLP is used to transform instance em-
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Figure 2. Illustration of retrieval by category names. UNINEXT can flexibly perceive objects of different categories by changing the

input prompts. Better view in color on screen.

beddings into a group of parameters w. Then these pa-
rameters are used to perform three-layer 1 x 1 convolu-
tions with feature maps, obtaining masks of instances.

* Replacing one-to-one Hungarian matching with
one-to-many SimOTA [5]. Traditional Hungar-
ian matching forces one GT to be only assigned
to one query, leaving most of the queries negative.
UNINEXT uses SimOTA [5], which enables multiple
queries to be matched with one GT. This strategy can
provide more positive samples and speed up conver-
gence. During inference, UNINEXT uses NMS to re-
move duplicated predictions.

¢ Adding an IoU branch. UNINEXT adds an IoU
branch to reflect the quality of the predicted boxes.
During training, IoU does not affect the label assign-
ment. During inference, the final scores are the geo-
metric mean of the instance-prompt matching scores
(after sigmoid) and the IoU scores.

* Adding some techniques in DINO [26]. To further
improve the performance, UNINEXT introduces some
techniques [26], including contrastive DN, mixed
query selection, and look forward twice.

1.4. Analysis and Visualizations

Analysis. We compare UNINEXT with other competi-
tive counterparts, which can handle multiple instance-level
perception tasks. The opponents include Cascade Mask R-
CNN [I] for object detection and instance segmentation,

SeqTR [28] for REC and RES, VMT [7] for MOTS and
VIS, and Unicorn [22] for SOT, VOS, MOT, and MOTS.
As shown in Figure 1, UNINEXT outperforms them and
achieve state-of-the-art performance on all 10 tasks.

Retrieval by Category Names. As shown in Fig-
ure 2, UNINEXT can flexibly detect and segment objects
of different categories by taking the corresponding cate-
gory names as the prompts. For example, when taking
“dining table. wine glass. cake. knife” as the prompts,
UNINEXT would only perceive dining tables, wine glasses,
cakes, and knives. Furthermore, benefiting from the flexi-
ble retrieval formulation, UNINEXT also has the potential
for zero-shot (open-vocabulary) object detection. However,
open-vocabulary object detection is beyond the scope of our
paper and we leave it for future works.

Retrieval by Language Expressions. We provide some
visualizations for retrieval by language expressions in Fig-
ure 3. UNINEXT can accurately locate the target referred
by the given language expression when there are many sim-
ilar distractors. This demonstrates that our method can not
only perceive objects but also understand their relationships
in positions (left, middle, right, etc) and sizes (taller, etc).

Retrieval by Target Annotations. Our method supports
annotations in both boxes (SOT) and masks (VOS) formats.
Although there is only box-level annotation for SOT, we ob-
tain the target prior by filling the region within the given box
with 1 and leaving other regions as 0. As shown in Figure 4,
UNINEXT can precisely track and segment the targets in
complex scenarios, given the annotation in the first frame.
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Figure 3. Illustration of retrieval by language expressions. Better view in color on screen.
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