
A. Further Implementation Details

In this section, we present more implementation details
of the proposed method and experiments.

A.1. Training Settings

In Tab. 7, we provide the hyper-parameters and training
recipes of BEVformer v2 used for InternImage-B [34] and
InternImage-XL backbones in Tab. 1.

Table 7. Training settings of BEVformer v2 with InternImage
backbones for the main results.

backbone InternImage-B InternImage-XL
training epochs 24 24
batch size 16 32
optimizer AdamW AdamW
base learning rate 4e-4 5e-4
weight decay 0.01 0.01
lr schedule step decay step decay
layer-wise lr decay 0.96 0.94
warmup iters 2000 2000
warmup schedule linear linear
gradient clip 35 35
image size 640 × 1600 640 × 1600
image-level aug ✓ ✓
temporal interval 4 seconds 4 seconds
bi-directional ✓ ✓

In Tab. 3, we also construct our BEVFormer v2 detector
on other backbones, including ResNet-50 [8], DLA-34 [39],
ResNet-101 [8], and VoVNet-99 [13]. We list their training
settings in Tab. 8.

Table 8. Training settings of BEVformer v2 with other backbones.

backbone R50 DLA34 R101 V2-99
batch size 16
optimizer AdamW
base lr 4e-4
backbone lr 2e-4 2e-4 4e-5 4e-5
weight decay 0.01

A.2. Network Architecture

In BEVformer v2, the image backbone yields 3 levels
of feature maps of stride 8, 16, and 32. We employ FPN
following the backbone to produce 5-level features of stride
8, 16, 32, 64, and 128. The perspective head takes all 5
levels of features, while the BEV head takes the first 4 levels
(with stride of 8, 16, 32, and 64).

A.2.1 Perspective Head.

We adopt the single-stage anchor-free monocular 3D detec-
tor implemented by DD3D [26], which consists of three in-
dependent heads: a classification head, a 2D detection head,
and a 3D detection head. The classification head produces
the logit of each object category. The 2D head yields class-
agnostic bounding boxes by 4 offsets from the feature loca-
tion to the sides and generates the 2D center-ness. The 2D
detection loss L2D derives from FCOS [31]. The 3D head
predicts the 3D bounding boxes with the following coeffi-
cients: the quotation of allocentric orientation, the depth of
the box center, the offset from the feature location to the
projected box center, and the size deviation from the class-
specific canonical sizes. Besides, the 3D head generates the
confidence of the predicted 3D box relative to the 2D con-
fidence. It adopts the disentangles L1 loss for 3D bounding
box regression and the self-supervised loss for 3D confi-
dence in [30], denoted as L3D and Lconf respectively. The
perspective loss for BEVFormer v2 is the summation of the
2D detection loss, the 3D regression loss, and the 3D confi-
dence loss:

Lpers = L2D + L3D + Lconf (2)

We refer the readers to [26] for more details of the perspec-
tive detection head.

A.3. Post-Process of the First-Stage Proposals

In this section, we describe the post-processing pipeline
for proposals from the perspective detection head. We start
with the raw predictions of all camera views provided by the
perspective head. For the i-th view in all views V , the pre-
dicted 3D bounding boxes and their scores are denoted as
{(Bi,j , si,j)}j . We filter out the candidates with the highest
score (probability) through the following post-processing
pipeline. Firstly, we perform non-maximum suppression
(NMS) on the proposals of each view i to obtain candidates
Ci without overlapping in the perspective view:

Ci := NMSpers ({(Bi,j , si,j)}j) (3)

The threshold of NMS is set as 2D IoU = 0.75. To ensure
that objects in all camera views can be detected, we balance
the numbers of proposals from different views by taking the
top-k1 of each view i after NMS:

C :=
⋃
i∈V

top-k1 (Ci) (4)

We set k1 = 100 in our experiments. All the 3D boxes in C
are projected to the bird’s-eye-view coordinate with corre-
sponding camera extrinsics. To avoid objects that appear in
multiple views causing overlapped proposals, another NMS
is applied on the BEV plane with BEV IoU = 0.3:

C := NMSbev(C) (5)



Table 9. 3D detection results on the nuScenes test set of BEVFormer v2 with a COCO pre-trained VoVNet-99 and a depth pre-trained
VoVNet-99. We omit the pre-training epochs for COCO since COCO pre-trained backbones are widely available and both settings use the
same COCO pre-training. To isolate the effectiveness of perspective supervision, we use the non-temporal version of both detectors.

Method Epoch Pre-train NDS mAP mATE mASE mAOE mAVE mAAE

BEVFormer v2 72 COCO 0.494 0.444 0.610 0.263 0.400 0.869 0.135
BEVFormer 15M Img + 120 + 24 COCO −→ DDAD15M −→ nuScenes 0.495 0.447 0.602 0.257 0.407 0.888 0.130

Finally, we select the top k2 = 100 proposals:

C := top-k2(C) (6)

For every 3D bounding box B in the final set of pro-
posals C, we use its projected center on the BEV plane,
(cx(B), cy(B)), as the reference points for Deformable
DETR in the object decoder.

B. Comparison with Depth Pre-trained Image
Backbones

To demonstrate that BEVFormer v2 does not rely
on domain-specific pre-training like DDAD15M [26] to
achieve state-of-the-art results with large-scale image back-
bones, we compare BEVFormer v2 with the original BEV-
Former [17] using the VoVNet-99 [13] backbone with
different pre-training settsings in Tab. 9. The pre-
trained VoVNet-99 backbone in the original BEVFormer
consists of a COCO object detection pre-training phase,
a DDAD15M depth pre-training phase as described in
DD3D [26], and a nuScenes monocular 3D object detection
pre-training phase. Instead of relying on this cumbersome
chain of pre-trainings, our BEVFormer v2 could achieve
the same detection results with an off-the-shelf COCO pre-
trained backbone.

Table 10. 3D Detection Results on Waymo val set of BEVFormer
v2 and other methods. We use ResNet-50 as the backbone and 1/5
split of the train set. Frames denotes the range of frames input in
the form of [−past,+future].

Method Frames LET-3D-APL LET-3D-AP

BEVFormer [0, 0] 0.331 0.474
BEVFormer v2 [0, 0] 0.347 0.495

BEVFormer [-4, 0] 0.358 0.499
BEVFormer v2 [-4, 0] 0.377 0.523

C. Results on the Waymo Open dataset.
To further confirm the generalization to different datasets

and the robustness to hyper parameter selection, we train
BEVFormer v2 on the Waymo dataset with architecture
and hyper-parameters identical to the nuScenes dataset and

compare it with the original BEVFormer [17]. As shown in
Tab. 10, BEVFormer v2 improves on BEVFormer signifi-
cantly for both the single- and the multi-frame settings.

D. Visualization
We demonstrate visualization for 3D object detection re-

sults of our BEVFormer v2 detector in Fig. 4. Our model
predicts accurate 3D bounding boxes for the target objects,
even for the hard cases in the distance or with occlusion. For
instance, our model successfully detects the distant pedes-
trian in the front-right camera, the truck overlapped with
multiple cars in the back camera, and the bicycle occluded
by the tree in the back-right camera.
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Figure 4. Visualization of BEVFormer v2 3D object detection predictions.
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