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A. Appendix
A.1. Broader Impacts

Our work aims to develop a vision-based 3D object de-
tection approach for roadside perception. The proposed
method may produce inaccurate predictions, leading to in-
correct decision-making for cooperative autonomous ve-
hicles and potential traffic accidents. Furthermore, we
propose a new perspective of leveraging height estima-
tion to solve PV-BEV transformation, facilitating a high-
performance and robust vision-centric BEV perception
framework. Although considerable progress has been made
with our proposed height net and height-based 2D-3D pro-
jection module, we believe it is worth further exploring how
to combine height and depth estimations to extend to au-
tonomous driving scenarios.

A.2. Contributions

Theoretically, our proposed height-based pipeline en-
tails: i) representation agnostic to distance, as visualized in
Fig. 1, ii) friendly prediction owing to centralized distribu-
tion as displayed in Fig. 2, iii) robustness against extrinsic
disturbance as illustrated in Fig. 3. Technically, we de-
sign a novel HeightNet and the projection module with less
computational cost. Experimentally, experiments on vari-
ous datasets and multiple depth-based detectors show the
superiority of our method in both accuracy and latency.

A.3. Latency

As shown in Tab. 6, we benchmark the runtime of
BEVHeight and BEVDepth. With an image size of
864x1536, BEVDepth runs at 14.7 FPS with a latency of
68ms, while ours runs at 16.1 FPS with 62ms, which is
around 5% faster. It is due to the depth range (1∼104m)
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being much larger than height (-1∼1m), thus ours has 90
height bins that less than 206 depth ones, leading to a slim-
mer regression head and fewer pseudo points for voxel pool-
ing. It evidences the superiority of predicting height instead
of depth and advocates the efficiency of our method.

Table 6. Latency of BEVHeight and BEVDepth.

Methods Backbone Range Number of bins Latency (ms) FPS

BEVDepth [3] R50 1 - 104m 206 82 12.2
BEVHeight R50 -1 - 1m 90 77 13.0

BEVDepth [3] R101 1 - 104m 206 68 14.7
BEVHeight R101 -1 - 1m 90 62 16.1
Measured on a V100 GPU. Image shape 864×1536.

A.4. Dynamic Discretization

The height discretization can be performed with uni-
form discretization (UD) with a fixed bin size, spacing-
increasing discretization (SID) [1] with increasing bin sizes
in logspace, linear-increasing discretization (LID) [5]and
our proposed dynamic-increasing discretization (DID) with
adjustable bin sizes. The above four height discretization
techniques are visualized in Fig. 8. Following DID strategy,
the distribution of height bins can be dynamically adjusted
with different hyper-parameter α.

Experiments in Tab. 7 show the detection accuracy im-
provement 0.3% - 1.5% when our dynamic discretization is
applied instead of uniform discretization(UD). The perfor-
mance when hype-parameter α is set to 2.0 suppresses that
of 1.5 in most cases, which signifies that hype-parameter α
is necessary to achieve the most appropriate discretization.

A.5. Analysis on Point Cloud Supervision.

To verify the effectiveness of point cloud supervision
in roadside scenes, we conduct ablation experiments on
both BEVDepth [3] and our method. As shown in Tab. 8,
BEVDepth with point cloud supervision is slightly lower
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Figure 8. Height Discretization Methods. Height hi is dis-
cretized over a height range [hmin, hmax] into N discrete bins.
From left to right, these are uniform discretization (UD), spacing-
increasing discretization (SID), linear-increasing discretization
(LID) and adjustable dynamic-increasing discretization(DID). For
the dynamic-increasing discretization (DID) strategy, height bins
with large α are more densely distributed when approaching the
hmin than the small hyper-parameter α conditions.

Table 7. Ablating our dynamic discretization on DAIR-V2X-I
dataset. Compared to the uniform discretization(UD), our method
achieves on average 1% improvement in average precision.

Spacing Veh.(IoU=0.5) Ped.(IoU=0.25) Cyc.(IoU=0.25)

DID (α) UD Easy Mid Hard Easy Mid Hard Easy Mid Hard

✓ 75.63 63.75 63.85 25.82 25.47 25.35 47.52 47.47 47.19
✓(1.5) 76.24 64.54 64.13 26.47 25.79 25.72 48.55 48.21 47.96
✓(2.0) 76.61 64.71 64.76 27.34 26.09 25.33 49.68 48.84 48.58

Table 8. Results with point cloud supervision on DAIR-V2X-I
dataset. We can observe that for both BEVDepth and BEVHeight,
LiDAR point cloud supervision did not help in terms of evaluation
results. This is another evidence that road-side perception is dif-
ferent from the ego-vehicle one.

Method Veh.(IoU=0.5) Ped.(IoU=0.25) Cyc.(IoU=0.25)

Easy Mid Hard Easy Mid Hard Easy Mid Hard

BEVDepth 71.56 60.75 60.85 21.55 20.51 20.75 40.83 40.66 40.26
BEVDepth† 71.09 60.37 60.46 21.23 20.84 20.85 40.54 40.34 40.32

BEVHeight 75.58 63.49 63.59 26.93 25.47 25.78 47.97 47.45 48.12
BEVHeight† 75.64 63.61 63.72 27.01 25.55 25.34 48.03 47.62 48.19
† denotes training with PointCloud supervision.

than that without supervision. As for our BEVHeight, al-
though there is a slight improvement under the IoU=0.5
condition, the overall gain is not apparent. This can be ex-
plained by the fact that the background in roadside scenarios
is stable. These background point clouds fail to provide ad-
equate supervised information and increase the difficulty of
model fitting.

A.6. Results on V2X-Sim Dataset

To certify the effectiveness of our method in multi-view
scenarios, we conduct experiments on V2X-Sim [4] simu-
lation dataset that contains four surround roadside cameras.
As shown in Tab. 9, our BEVHeight surpass the BEVDepth
by more than 10.88%, 21.15% on vehicle and cyclist re-
spectively, which verifies the effectiveness of our method.

Table 9. Comparison on the V2X-Sim Detection Benchmark.

Method
Vehicle(IoU=0.5) Cyclist(IoU=0.25)

Easy Mod. Hard Easy Mod. Hard

BEVDepth [3] 81.99 81.39 81.31 45.95 45.93 45.90
BEVHeight 92.80 92.27 92.15 67.24 67.08 67.00

A.7. Effectiveness on Multi Depth-based Detectors

We extend our modules on BEVDepth [3] and
BEVDet [2] on DAIR-V2X-I [6] and present the results
here. Replacing the depth-based projection in BEVDepth
[3], our method achieves a performance increase of 2.19%,
5.87%, 4.61% on vehicle, pedestrian and cyclist. Simi-
larly, our approach surpasses the origin BEVDet by 8.56%,
5.35%, 8.60% respectively.

Table 10. Ablation studies on different depth-based methods.
Here, we conduct the evaluation on DAIR-V2X-I val set, and re-
port the results of three types of objects, vehicle (veh.), pedes-
trian (ped.) and cyclist (cyc.).

Method VT
Veh.(IoU=0.5) Ped.(IoU=0.25) Cyc.(IoU=0.25)

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

BEVDepth [3] D 75.50 63.58 63.67 34.95 33.42 33.27 55.67 55.47 55.34
H 77.78 65.77 65.85 41.22 39.29 39.46 60.23 60.08 60.54

BEVDet [2] D 59.59 51.92 51.81 12.61 12.43 12.37 34.91 34.32 34.21
H 69.42 60.48 59.68 18.11 17.81 17.74 44.69 42.92 42.34

VT denotes view transformation, D,H represents depth-based and height-based ones.

A.8. More Results on DAIR-V2X-I Dataset

Tab. 11 shows the experimental results of deploying our
proposed approach on the DAIR-V2X-I [6] val set. Under
the same configurations (e.g., backbone and BEV resolu-
tion), our model outperforms the BEVDepth [3] baselines
by a large marge, which demonstrates the admirable perfor-
mance of our approach.

A.9. More Visualizations

In Fig. 9 and Fig. 10, we show more visualization results
on the DAIR-V2X-I [6] dataset. As can be seen from the
samples in I/II-(a) clean, our BEVHeight manage to detect
objects in middle and long-distances. As for the extrinsic
disturbance cases in I/II-(b) and I/II-(c), our method can still
guarantee the detection accuracy in terms of cars, pedestrian



Table 11. Comparison on the DAIR-V2X-I Detection Benchmark. Here, we report the results of three types of objects: Vehicle,
Pedestrian and Cyclist. Each object is categorized into three settings according to the difficulty defined in [6]. Our BEVHeight manages
to surpass the BEVDepth baseeline over a margin of 2% - 6% under the same configurations.

Method
Scale of Detector

AP3D

Vehicle(IoU=0.5) Pedestrian(IoU=0.25) Cyclist(IoU=0.25)

Backbone BEV Easy Middle Hard Easy Middle Hard Easy Middle Hard

BEVDepth [3] R50 128x128 73.05 61.32 61.19 22.10 21.57 21.11 42.85 42.26 42.09
BEVDepth [3] R101 128x128 74.81 62.44 62.31 24.49 23.33 23.17 44.93 44.02 43.84
BEVDepth [3] R101 256x256 75.50 63.58 63.67 34.95 33.42 33.27 55.67 55.47 55.34

BEVHeight R50 128x128 76.61 64.71 64.76 27.34 26.09 26.33 49.68 48.84 48.58
BEVHeight R101 128x128 76.93 64.97 65.03 28.53 27.15 27.48 51.39 50.83 50.44
BEVHeight R101 256x256 77.78 65.77 65.85 41.22 39.29 39.46 60.23 60.08 60.54

Figure 9. Visualization Results of BEVDepth and our proposed BEVHeight under the extrinsic disturbance. We use boxes in red to
represent false positives, green boxes for truth positives, and black for the ground truth. The truth positives are defined as the predictions
with IoU>0.5 for vehicle and IoU>0.25 for pedestrian and cyclist. I/II-(a) Clean means the original image without any processing; I/II-(b)
Disturbed Roll denotes camera rotate 1 degree along roll direction; I/II-(c) Disturbed Roll and Pitch represents camera rotate 1 degree
along roll and pitch directions simultaneously. We use blue dashed ovals to highlight the pronounced improvements in predictions.



Figure 10. Visualization Results of BEVDepth and our proposed BEVHeight under the extrinsic disturbance in another scene.

and cyclist. It can be concluded that our method can signif-
icantly improve the accuracy in middle and long-distances
and the robustness to extrinsic disturbance.
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