Appendix of Bootstrap Your Own Prior:
Towards Distribution-Agnostic Novel Class Discovery

This is the Appendix of the CVPR 2023 paper titled
Bootstrap Your Own Prior: Towards Distribution-Agnostic
Novel Class Discovery, which covers the following two
parts: (1) implementation details, and (2) additional results.
A. Implementation Details
A.1. Pseudo-label Generation

As discussed in the main text, we use the Sinkhorn-
Knopp algorithm [3] to solve the label assignment problem
(Egs. (1) and (2)). The solution can be written as

Y* = diag(u)Mdiag(v), (A)

in which
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and u € R", v € R® are renormalization vectors to make
Y * a probability matrix, updated by simple matrix scaling
iterations [3]:
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and we follow [2] to use a small iteration number of 3. In
particular, we integrate the estimated class prior p into the
iterations in Eq. (C) so that the generated label assignment
Y * can better reflect the true class distribution.

It is worth noting that, unlike base classes, the order of
novel classes are undefined in NCD [9], which means that
the generated Y* in different iterations are not guaranteed
to contain exactly same-order assignments. In other words,
directly applying the estimated prior p can be an overstrict
constraint since it implicitly forces the class order recorded
in p. Thus, before integrating p into Eq. (C), we reorder its
elements such that it aligns with the predicted distributions
in M, i.e., to ensure a consistent per-class constraint.

A.2. Network Details

We follow former works [4, 1 1] to use the same network
architectures. In particular, besides the same image en-
coder (i.e., ResNet-18 [7]), we also use the same base/novel

head architecture. For the base head h(-), we use an /o-
normalized linear layer with C® output neurons; the novel
head g(-) projects the 512-dimensional image features to the
256-dimensional ones with 2048 hidden units, followed by
an /2-normalized linear layer with C™ output neurons.

We also follow [4, | 1] to use multi-head clustering [, 8]
to smooth down possible clustering degeneration. We apply
this strategy to the novel head g(-) with a head number of
4, i.e., duplicating four novel heads and iterating over these
heads in training. Note that we only report the averaged
clustering accuracy of the four novel heads in our experi-
ments. Similar to [4, 1 1], we also use the swapped predic-
tion training strategy [2] to encourage the prediction con-
sistency between different augmentations of a same input.
Specifically, given an input image, we first generate its two
augmentations a1, as. The model will accordingly output
two predictions whose labels are y, y,, respectively. Then
we train the model by minimizing £(a1,y,) + L(a2,y;)
(see Eq. (3)), in which the labels are swapped.

For network optimization, we also follow [4,11], i.e., us-
ing the SGD optimizer with momentum 0.9, linear warm-up
in the first 10 epochs (200 epochs in total), cosine anneal-
ing learning rate (0.2 base, 0.001 min), a weight decay rate
of 1.5 x 104, and a batch size of 256, with standard data
augmentations (moderate random crop, flip, jittering, and
grey-scale).

B. Additional Results
B.1. Results on More Imbalance Ratios

We report in Tabs. A, B, D and E the results on more
imbalance ratios, i.e., 50 and 1 (balanced). Our proposed
BYOP consistently improves the performance of original
UNO [4] and ComEXx [| 1], demonstrating its effectiveness
across various distribution scenarios. It is surprising to see
the non-trivial improvements under the conventionally bal-
anced class distribution, validating the versatility of our pro-
posed class prior estimation and dynamic temperature tech-
nique, which constantly encourage more accurate predic-
tions under different class distributions.



Dataset — CIFARI10 (imbalance ratio: 50) CIFARI10 (balanced)

Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS [5] 46.7 754 451 603 - - - 91.6 951 913 932 - - -
RS+ [5] 464 643 438 541 643 517 58.0 923 927 920 924 927 86.1 894
NCL [12] 550 735 482 609 - - - 932 946 925 093.6 - - -
UNO [4] 454 765 480 623 624 493 559 925 97.0 93.1 951 939 909 924
UNO + BYOP 592 76.8 499 634 628 516 572 948 97.0 953 962 940 93.5 93.8
ComEx [11] 49.1 770 519 645 656 530 593 958 965 927 946 951 923 937
ComEx + BYOP 608 77.6 552 664 660 574 617 959 968 930 949 952 925 939

Table A. Performance on CIFAR10 with different imbalance ratios. Results are reported in averaged top-1 classification/clustering accuracy

(%). “Trad.” means “Traditional”, and “Nov.” means “Novel”. Best and second-best results are highlighted in each column.

Dataset — CIFAR100-20 (imbalance ratio: 50) CIFAR100-20 (balanced)

Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS [5] 39.6 46.6 391 45.1 - - - 729 745 722 740 - - -
RS+ [5] 38.6 444 377 4311 444 282 412 719 717 692 712 717 584 69.0
NCL [12] 404 462 353 440 - - - 86.2 739 833 758 - - -
UNO [4] 370 48.8 33.8 458 460 29.1 426 780 763 763 763 742 66.1 72.6
UNO + BYOP 47.0 496 369 47.1 46.6 33.6 440 798 770 783 773 746 68.1 733
ComEx [11] 40.2 496 358 468 472 342 44.6 79.1 781 763 77.7 76.6 74.1 76.1
ComEx + BYOP 524 505 362 47.6 48.0 351 454 797 783 773 781 713 755 769

Table B. Performance on CIFAR100-20 with different imbalance ratios. Results are reported in averaged top-1 classification/clustering
accuracy (%). “Trad.” means “Traditional”, and “Nov.” means “Novel”. Best and second-best results are highlighted in each column.

Used C™" — Estimated Truth
Imbalance ratio — 100 10 1 100 10 1
k-means 30.6 38.1 432 323 388 447
DTC [6] 399 439 469 430 447 485
UNO 343 457 1769 352 469 78.0
UNO + BYOP 48.5 53.0 784 50.3 545 79.8

Table C. Clustering accuracy (%) on CIFAR100-20.

B.2. Results with Unknown C"

To isolate the effect of class distribution priors, and also
for fair comparisons, we follow most of the recent works
to assume the number of novel classes (C™) to be known
a priori. Given the fact that such knowledge is not always
available in practical scenarios, we further experiment with
an unknown C™ on CIFAR100-20.

Firstly, we estimate C™ using semi-supervised k-means
introduced in [6], with 60 classes for feature pretraining, 20
classes in the probe set, and 20 classes in the novel set. We
obtain the estimation C™ = {22,22,18} for imbalance ra-
tio in {100, 10, 1}, respectively. Then we rerun the experi-
ments with the estimated C", and the results are as shown in
Tab. C, where we also report the results using the true C™
for reference. Our method shows consistent improvement
over the baselines. Although the estimated C" seems rea-
sonable even under high data imbalance, an accurate esti-
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Figure A. True class distribution vs. estimated class distribution of
the 50 novel classes in CIFAR100-50 with imbalance ratio 100.

mation on the large-scale imbalanced data remains an open
challenge, which will be our future work.

B.3. More Qualitative Results

Estimated Class Prior. We show in Fig. A the comparison
between the true class distribution and the estimated class
distribution using BYOP in a random run. We can observe
that BYOP achieves promising results in class prior estima-
tion, providing a better clustering constraint compared with
the conventionally uniform prior, which plays a critical role
when data is highly imbalanced.



Dataset —

CIFAR100-50 (imbalance ratio: 50)

CIFAR100-50 (balanced)

Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS [5] 320 48.7 254 37.1 - - - 46.8 792 465 629 - - -
RS+ [5] 28.0 389 232 31.1 389 223 306 525 707 518 613 707 49.1 599
NCL [12] 31.0 474 241 358 - - - 521 778 508 643 - - -
UNO [4] 26.8 503 251 377 419 247 333 485 792 478 635 712 452 582
UNO + BYOP 320 50.8 26.0 384 423 262 343 512 799 511 655 715 488 60.2
ComEx [11] 279 517 251 384 45.0 248 349 51.0 79.2 507 650 743 50.1 62.2
ComEx + BYOP 33.6 520 263 392 459 265 36.2 522 803 51.0 657 76.8 50.7 63.8

Table D. Performance on CIFAR100-50 with different imbalance ratios. Results are reported in averaged top-1 classification/clustering
accuracy (%). “Trad.” means “Traditional”, and “Nov.” means “Novel”. Best and second-best results are highlighted in each column.

Dataset — Tiny-ImageNet (imbalance ratio: 50) Tiny-ImageNet (balanced)

Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS [5] 244 427 151 289 - - - 173 6477 17.8 413 - - -
RS+ [5] 23.7 303 157 230 303 163 233 209 529 21.1 370 529 224 377
NCL [12] 23.6 381 146 264 - - - 23.1 63.0 205 418 - - -
UNO [4] 21.6 395 178 287 295 17.1 233 340 683 343 513 557 328 443
UNO + BYOP 26.0 405 182 294 297 184 24.1 358 687 357 522 56.8 344 456
ComEx [11] 227 415 188 302 343 18.7 26.5 369 677 368 523 59.6 36.7 482
ComEx + BYOP 26.1 41.8 18.8 303 353 191 272 374 678 37.6 527 61.0 37.6 493

Table E. Performance on Tiny-ImageNet with different imbalance ratios. Results are reported in averaged top-1 classification/clustering

accuracy (%). “Trad.” means “Traditional”, and “Nov.” means “Novel”. Best and second-best results are highlighted in each column.

t-SNE Visualizations. We provide visualizations in a more
challenging scenario, i.e., CIFAR10 with imbalance ratio
100. As shown in Fig. B(a), with a uniform class prior in
training, UNO still tends to equally partition the samples,
resulting in inferior performance, e.g., wrongly partitioning
majority class dog into different clusters. In contrast, bene-
fiting from the estimated class prior, BYOP does a better job
in preserving the true data structure. As shown in Fig. B(b),
the majority class dog spans the largest space due to the sig-
nificant data imbalance, which may, however, lead to indis-
tinguishable decision boundaries between classes. This im-
plies that distribution-agnostic NCD remains an open chal-
lenge in practice, especially under high data imbalance.

B.4. Parameter Analysis

Recall that we estimate the class distribution prior based
on the model predictions stored in a first-in-first-out queue
KC. Here we analyze the effect of different queue sizes. As
shown in Fig. C, a small queue size may not be representa-
tive enough for the data distribution, yet a moderate queue
size of 6000 is adequate to achieve promising results. It is
interesting that larger queue sizes may not always lead to
better performance. One possible reason can be the slower
updating phenomenon—it takes more iterations to update
the overall class distribution in a larger queue, which may
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Figure B. t-SNE [10] visualizations of the five novel classes in the

training split of CIFAR10 with imbalance ratio 100. (a) Output
space of UNO [4]. (b) Output space of UNO + BYOP.

delay the adaption of estimated class prior. Thus, we stick
to the moderate queue size of 6000 in our experiments for
both estimation accuracy and computation efficiency.
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