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6. Additional implementation details
Hierarchical sampling. We follow the hierarchical sam-
pling strategy of NeRF [3] to implement Equation (3) and
(10) through two models with the same structure: We first
select Nc = 64 points along each ray using stratified sam-
pling and then draw Nf = 128 points according to the
piecewise-constant PDF:

ŵi =
wi∑Nc

j=1 wj

, wi = Ti(1− exp(−σiδi)). (20)

Note that all the intrinsic components estimated (Ã, S̃, Ñ)
are accumulated through the values at the Nc +Nf points,
predicted by the “fine” network, corresponding to the “fine”
rendering results in NeRF [3]. Our “coarse” network uses
only Equation (3) and (4) for rendering and supervision, as
we find Equation (3) and (4) are sufficient to produce rough
density.

Network architectures. We introduce the detailed net-
work architectures of our modules. The design of our In-
trinsicCNN (Gintrinsic) is shown in Figure 8: The input im-
age I is downsampled with three convolutional layers, then
proceeds with nine residual blocks and is finally upsampled
with the skip connections from the first three convolutional
layers. The first convolution kernel is in the shape of 7× 7
and others are in the shape of 3 × 3. We use instance nor-
malization and ReLU activation after each convolution, and
use sigmoid and tanh to adjust the value range of final out-
puts (Ã, S̃, Ñ). The design of our LightingCNN (Glighting)
is much simpler. As shown in Figure 9, it consists of four
convolutional layers, a global average pooling, and a fully-
connected layer, with instance normalization and ReLU ac-
tivation. Our SkyMLP (Fsky) has five fully-connected layers
in total, while only one layer observes the lighting represen-
tation (L and L̃). Fdensity consists of eight fully-connected
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Figure 8. Network architecture of IntrinsicCNN.

layers and other MLPs (Fcolor, Falbedo, Fshadow) consist of
only one layer, keeping similar structure with NeRF [3].

Random jitter. We use random jitter during our training
stage to improve the stabilization of our model, by adding
random Gaussian noise to the predicted s and randomly
flipping the images horizontally. We empirically find that
adding small Gaussian noise to s before volumetric accu-
mulation can improve the robustness of our shadow predic-
tor Fshadow:

s′(x) = Fshadow(γx(x),L) + εs, εs ∼ N(0, 0.25). (21)
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Table 2. Sample images and the numbers of training and test imaging in our dataset.

Scenes

BRANDENBURG
GATE

BUCKINGHAM
PALACE

GRAND
PLACE

NOTRE
DAME

HOUSES OF
PARLIAMENT

Training 1000 1000 900 1000 800

Test 363 314 164 235 183

Scenes

PANTHEON
EXTERIOR

TAJ
MAHAL

TODAJI
TEMPLE

SACRÉ
COEUR

TREVI
FOUNTAIN

Training 900 1000 800 900 1000

Test 260 312 104 279 491
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Figure 9. Network architecture of LightingCNN.

To enhance the generalization ability of IntrinsicCNN, we
randomly crop the images and pseudo labels into patches
with the size of 256 × 256, and then randomly flip these
patches horizontally as data augmentation.

Image collection. We collect our outdoor landmark im-
age dataset from the MegaDepth dataset [2] and the Pho-
totourism dataset [1]. We keep the camera parameters and
point coordinates generated by COLMAP [5]. We also cal-

culate the near and far planes according to the horizontal
distance between each camera and the 3D point. After fil-
tering out low-quality images, we create a dataset with 10
outdoor scenes and about 10,000 images in total to train our
NeRF module. The detailed information of each scene is
illustrated in Table 2. We have provided results on 3 scenes
(SACRÉ COEUR, TODAJI TEMPLE, PANTHEON EXTE-
RIOR) in Figures 2, 3, 5 of the main paper, and results from
the remaining scenes are included in Section 7 of this sup-
plementary material. Apart from these 10 scenes, we also
collect 2 outdoor scenes from the MegaDepth dataset [2]
with about 100 images in total for generalization analy-
sis (COLLEGE OF THE FOUR NATIONS and TRIUMPHAL
ARCH OF THE STAR, whose results have been provided in
Figure 4 of the main paper.).

7. Additional results
We present more relighting and intrinsic decomposition

results of our method and compare with [6, 8] in Figures
12, 13, 14.

With the help of our LightingCNN, our method can syn-
thesize more reasonable shading according to the surface
appearance of the reference image. As shown in the sev-
enth row of Figure 12, our method relights the scene with
globally bright illumination and avoids baking the blue of
the sky into shading.

With the supervision of pseudo labels, our IntrinsicCNN
captures more accurate intrinsic components and enhances



the relighting performance. As shown in the second row of
Figure 13, our method distinguishes the effect of the sunset
from the albedo of SACRÉ COEUR, while RelightingNet [6]
keeps this effect in relighting results.

Without understanding the whole outdoor scene, syn-
thesizing the cast shadow under specific lighting condition
from only one input image is challenging and usually leads
to unrealistic results. As shown in the sixth row of Fig-
ure 13, RelightingNet [6] produces unrealistic cast shad-
ows as there are actually no buildings surrounding TODAIJI
TEMPLE. Shadow generation from a single image with a
limited view is out of the scope of our method and should
be left to future work.

In Figure 14, we show additional results of estimated in-
trinsics on BRANDENBURG GATE and TAJ MAHAL scenes.
Our method recovers smoother and cleaner intrinsic compo-
nents than RelightingNet [6] and InverseRenderNet [8]. As
shown in the fifth and sixth rows of Figure 14, our NeRF
module is especially effective in recovering the shape of the
dome. And with the supervision of pseudo labels generated
by our NeRF module, our IntrinsicCNN can also estimate
normal and shading maps more precisely.

We follow the idea of NeRF-OSR [4] and conduct an-
other quantitative evaluation. We collect a subset of im-
age pairs from each scene among the outdoor image collec-
tions, and project the output images to the same view point
as the target images (using camera parameters recovered
by COLMAP and depth maps provided by MegaDepth) to
roughly align them (as shown in Figure 10). Then we eval-
uate the relighting capabilities of our CNN module and Re-
lightingNet [6]. The metrics are reported in Table 3 and
note that the sky regions are eliminated in the evaluation.

Our CNN RelightingNet

Figure 10. Example of image projection.

Method MSE ↓ MAE ↓
Our CNN 0.1919 0.3565

RelightingNet 0.2165 0.3746
Table 3. Quantitative evaluation by projection.

8. Failure cases
There are failure cases when our method cannot tell apart

shadow and albedo correctly in extremely dark regions due
to the ambiguity between them. As shown in Figure 2, some
regions such as the spaces between pillars, are predicted to
have extremely dark shadows by InverseRenderNet [7] and
RelightingNet [6], while our IntrinsicCNN prefers darker
albedo and brighter shadow. Such ambiguity is mainly from
NeRF module. For regions that are black in almost all ob-
served images, our NeRF module can reconstruct these re-
gions by setting either their albedo or shadow to black. We
experimentally find that our NeRF module usually recovers
these regions with darker albedo. Our IntirnsicCNN inher-
its this ambiguity with the generated pseudo labels so that
it fools our method into confusing them. Another exam-
ple is shown in Figure 11 and marked with red bounding
boxes. In this example, our NeRF module predicts unde-
sirable shadow in the red boxes, our IntrinsicCNN recov-
ers a slightly better result, and RelightingNet [6] provides
more reasonable intrinsic decomposition. However, prefer-
ring darker shadow is not always a good strategy. As shown
in Figure 11, the darkness of the black windows marked
with green bounding boxes comes from their albedo rather
than shadow. But RelightingNet [6] produces dark shadows
for these windows, while our results are more reasonable in
this case.

Our NeRF Our CNN RelightingNet

Image

Figure 11. Example of failure case.
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Figure 12. Relighting results (the target image in the middle rendered with lighting condition of the reference image in the leftmost and
rightmost column) with cast shadows from our CNN and RelightingNet (RLN) [6].
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Figure 13. Relighting results (the target image in the middle rendered with lighting condition of the reference image in the leftmost and
rightmost column) with cast shadows from our CNN and RelightingNet (RLN) [6].
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Figure 14. Estimated intrinsics (albedo, normal, shading, and shadow) and reconstruction results with shadow from our CNN module, our
NeRF module, RelightingNet (RLN) [6], and InverseRenderNet (IRN) [8].
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