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This document presents supplementary materials that
were not included in the main manuscript due to page limi-
tations. Firstly, we present the complete solution deviation
for the linear diffusion and the full architecture for Spectral
Diffusion (SD). We also perform additional experiments to
confirm the effectiveness of our proposed SD. Furthermore,
we provide details on our implementation, including dataset
settings, evaluation metrics, and hyper-parameter settings.

1. Linear Diffusion as Wiener Filters
Let us consider an additive white noise model given by

x′ = x+ ϵ, where x is the clean signal and ϵ is a Gaussian
white noise with ϵ ∼ N (0, σ2I). The optimal denoiser aims
to estimate the recovered signal that can best recover the
original clean signal x. To align with the DPM objective,
we adopt a different notation that recovers the noise ϵ as an
approximation ϵ ≈ s(x′;θ).

θ∗ = argmin
θ,x

Eθ[||s(x+ ϵ;θ)− ϵ||22] (1)

Note that both predicting the signal or the noise does not
make any difference in the additive model, since the recon-
structed image is x′ − s(x′;θ).

To simplify the model and find a closed-form solution,
we investigate a linear filter case in which s(x′;θ) = h∗x+
h ∗ ϵ, where ∗ denotes the convolution operator. Assuming
that x is wide-sense stationary and ϵ is white noise with a
variance of σ2, the optimal filter is known as the Wiener
filter [5], and can be derived exactly

H∗(f) =
σ2

|X (f)|2 + σ2
(2)

where |X (f)|2 is the power spectrum of the signal x and
H∗(f) is the frequency response of h∗.
Proof: Assume that F is the Fourier transformation. Since
the convolution in the time domain is equivalent to the mul-
tiplication in the Fourier domain

H(X + F [ϵ]) = F [h ∗ (x+ ϵ)] (3)

The estimation error signal E(f) is defined in Fourier do-
main as

J(f) = H(X + F [ϵ])−F [ϵ] (4)

We thus minimize the mean square error E(f), which is, in
essence, identical to Equation 1

min
h

E[|J(f)|22] (5)

= min
h

E[|H(X + F [ϵ])−F [ϵ]|22] (6)

= min
h

E[
(
H(X + F [ϵ])−F [ϵ]

)∗(H(X + F [ϵ])−F [ϵ]
)
] (7)

The symbol ∗ denotes the complex conjugate. To obtain the
least mean square error filter,we set the complex derivative
of Equation 7 with respect to filter H(f) to zero

∂E[|J(f)|22]
∂H(f)

= 2H(f)|(X + F [ϵ])|2 − 2|F [ϵ]|2 = 0 (8)

where |(X + F [ϵ])|2 = E[(X + F [ϵ])(X + F [ϵ])∗] and
|F [ϵ]|2 = E[F [ϵ]F [ϵ]∗] are the power spectrum of the input
noisy image x′ and the cross-power spectrum between x′

and ϵ. Because ϵ is probabilistically independent of x0, the
second term boils down to |F [ϵ]|2. Then, the solution is
known as a Weiner solution

H∗(f) =
|F [ϵ]|2

|(X (f) + F [ϵ])|2
=

σ2

|X (f)|2 + σ2
(9)

For white noise with known variance σ2, |F [ϵ]|2 is a
constant of σ2.

In DPMs’ formulation, the signals and noises are scaled
with ᾱ such that xt =

√
ᾱx0 +

√
1− ᾱϵ, where the linear

optimal filter at step t could be written as

H∗
t (f) =

1

ᾱ|X0(f)|2 + 1− ᾱ
(10)

where |X0(f)|2 is the power spectrum of x0 and H∗
t (f) is

the frequency response of h∗
t .
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Error Analysis for DPM. By plugging the solution back to
the cost function in Eq. 4, we have the error as

|J∗(f)|2 = |H∗
t (f)(X + F [ϵ])−F [ϵ]|2 (11)

= |F [ϵ]|2
[
1− |F [ϵ]|2

|F [ϵ]|2 + |X (f)|2
]

(12)

=
|X (f)|2|F [ϵ]|2

|F [ϵ]|2 + |X (f)|2
(13)

=
1

1/SNR + SNR
(14)

where SNR is the signal-to-noise ratio. For function g(x) =
1

1/x+x , x > 0, it has a unique maximum at x = 1. When
x > 1, g(x) is decreasing; when 0 < x < 1, g(x) is in-
creasing.

2. Improved DPMs through Frequency
In this section, we aim to describe several training tech-

niques that have been observed to enhance the visual quality
of DPMs. These techniques include cosine noise schedul-
ing [4] and the Unet structure, and we demonstrate how they
implicitly improve the generation of high-frequency com-
ponents.
Cosine Scaling. Cosine scaling [4] is a noise scaling
method for ᾱt based on a cosine function. This method
increases ᾱt when t is small, resulting in more reverse steps
for denoising nearly-clean images.

Our paper shows that DPMs initially reconstruct the low-
frequency components of an image and gradually shift to-
wards detail recovery during denoising. Consequently, co-
sine scaling prioritizes the restoration of high-frequency de-
tails by allocating more steps during the nearly-clean stage,
compared to linear noise scaling.
UNet Architecture. Neural networks have a tendency
to smooth out input information as it propagates through
deep layers, which can be understood as a special case of
Gaussian Process [3]. To counteract this effect and better
preserve the textual and high-frequency details of images,
Unet incorporates skip connections between shallow and
deep layers, resulting in improved performance compared
to plain encoder-decoder structures. As a result, using Unet
has become a common practice when designing DPM ar-
chitectures.

3. Additional Experiments
In this section, we provide more experiments to support

our motivation and verify our SD models.

3.1. High-Frequency Loss and visual quality

Our paper is premised on the fundamental assumption
that high-frequency components play a significant role in
determining visual quality. We tested this assumption by
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Figure 1. FID and σ2 plot on FFHQ dataset

measuring the FID score between real images and low-pass
filtered images. We aimed to understand the impact of high-
frequency absence on the FID score using a simple low-pass
filter.

Specifically, we applied Gaussian filters with
a kernel size of 9, zero mean, and σ2 =
0.1, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 3.0, 5.0 to
the 256 × 256 FFHQ dataset. For each σ2, we calculated
the FID score between 50k clean and 50k blurred images.
As we increased σ2, we removed more high-frequency
components, resulting in heavily blurred images.

Figure 1 shows that a serious drop in FID score was ob-
served with σ2 around 0.5 (marked in red). Although the
visual degradation with a small σ2 was not apparent to hu-
man perception, the FID score significantly increased from
2e-12 to 18.54 when σ2 increased from 0.1 to 1.0. This
finding indicates that the FID score is highly sensitive to
high-frequency recovery in images, supporting our motiva-
tion to enhance the high-frequency recovery of slim diffu-
sion models to improve their performance.

3.2. Ablation Study on the Distillation Locations

For DPMs, we can distill knowledge from the teacher
by selecting arbitrary outputs or feature positions. In this
part, we apply distillation at multiple positions to identify
the best option. Our candidate positions include the model’s
final output (output), feature map after the last up-sample
operation (feat-up1), feature map after the second last
up-sample module (feat-up2) and the feature map after
the last down-sample layer (feat-down4). Those posi-
tions are formally defined in Sec. 4.4. Since the teacher
model shares a similar structure as its student, we decide
to distill the feature/output at the same location by default.
We validate each option on FFHQ unconditional image
generation task. We use the default distillation weight of
λs = λf = 0.1.

We visualize the results in Figure 2. Our key observa-
tion is that, distilling the deep layers, especially the output
layer, helps the most, while distilling the shallow layer of
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Figure 2. FID score with different distillation positions. Smaller
the better. The red line is the our un-distilled baseline.

the DPMs even deteriorates the visual quality of the gener-
ated images. In our paper, we opt to distill the knowledge
on the output and feat-up1, resulting in 10.5 FID.

3.3. Ablation Study on the Distillation Weights

Our SD is trained by mimicking the high-frequency pre-
dictions of a pre-trained large DPM. We would like to verify
the weight selection for both spatial and frequency distilla-
tion terms. An ablation study is conducted by training our
SD with different λs and λf ∈ {0, 0.01, 0.1, 0.5, 1.0} on
FFHQ dataset. The distillation is applied on output and
feat-up1.

λs

λf 0 0.01 0.1 0.5 1.0

0 14.7 13.6 11.4 12.8 14.2
0.01 14.3 13.4 11.7 12.3 13.9
0.1 12.3 11.6 10.5 10.9 13.3
0.5 11.6 12.3 11.7 13.0 14.6
1.0 12.8 12.5 12.8 14.3 16.1

Table 1. FID score on different distillation weights. Smaller the
better.

We report the results in Table 1. It is noted that a mod-
erate distillation weight of λs = λf = 0.1 gets the small-
est FID score. Thus we apply them as our default hyper-
parameters in the main paper.

3.4. Spectral Property OF SD

To support our claims that our SD is superior at the gen-
eration of the high-frequency component, we compare the
reduced spectra of real images, Lite-LDM generated im-
ages, and images generated by SD in Figure 3. In the
LSUN-Bedroom dataset, we compute 2D-coefficients for
real or generated images and integrate them into 1D signals
for visualization. The curves are averaged over 10k images.
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Figure 3. Mean reduced spectrum from real and generated images.

Although both models achieve reasonable reconstruction
performance on the low-frequency part of the real distribu-
tion, Lite-LDM largely falls off at the high end of the spec-
trum for image synthesis. In contrast, our SD achieves much
better high-frequency generation quality than the baseline.
It again highlights our core motivation to strengthen the
high-frequency components for small DPMs.

3.5. Visualization for the Generated Images

To further support the effectiveness of our proposed
SD, we visualize more generated high-resolution images on
FFHQ, CelebA-HQ and class-conditioned ImageNet.

The synthesized results are demonstrated in Figure 5 for
FFHQ, Figure 4 for CelebA-HQ and Figure 6 and Figure 7
for ImageNet dataset. With around 10% the computational
cost of the standard LDM, our model still achieves supe-
rior visual quality and sample diversity. For example, SD
is excellent at the restoration of animal feathers and human
hair. On both face generation tasks, fluffy and glossy hair is
clearly visible. Those results underpin that SD manages to
generate realistic high-frequency image details.

However, we observe that SD still face difficulty in pro-
ducing dense but connected curves, when synthesizing the
spaghetti and cable on the pirate ship, as dis-
played in Figure 7.

4. Experimental Details
4.1. Evaluation Metrics

FID. We compute the FID [1] score us-
ing torchmetrics.image.fid by counting the
Fréchet distance between 50K real training images and
50K synthesized images.
MACs. MACs measure the theoretical amount of Multiply-
Add Operations in the neural networks for certain input
sizes. To ensure a fair comparison, we re-estimate the
MACs number using flops-counter.pytorch. For
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Figure 4. Images generated on CelebA-HQ Dataset with 500 DDIM steps.

Figure 5. Images generated on FFHQ Dataset with 500 DDIM steps.
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Figure 6. Randomly sampled images from class n01531178, n01443537 and n01514668.
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Figure 7. Randomly sampled images from class n02106166, n07831146 and n03947888
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FFHQ 256× 256 CelebA-HQ 256× 256 LSUN-Bedroom 256× 256 LSUN-Church 256× 256
f 4 4 4 8

latent shape 64× 64× 3 64× 64× 3 64× 64× 3 32× 32× 4
Diffusion Steps 1000 1000 1000 1000
Noise Schedule Linear Linear Linear Linear

Batch Size×Num GPU 32×8 32×8 32×8 64×8
Iterations (1k Warmup)150k (1k Warmup)150k (1k Warmup)150k (1k Warmup)150k

Initial Learning Rate 5.12e-4 5.12e-4 5.12e-4 5.12e-4
Learning Rate Schedule Linear Decay Linear Decay Linear Decay Linear Decay

Table 2. Hyper-parameters for the unconditional image generation.

ImageNet 256× 256 LAION 256× 256
f 4 8

latent shape 64× 64× 3 32× 32× 4
Diffusion Steps 1000 1000
Noise Schedule Linear Linear

Batch Size×Num GPU 32×8 64×32
Iterations (1k Warmup)300k (1k Warmup)300k

Initial Learning Rate 5.12e-4 4.096e-3
Learning Rate Schedule Linear Decay Linear Decay

w 3.0 2.0

Table 3. Hyper-parameters for the class-conditioned and text-
conditioned image generation.

the designated models in the paper, we download the offi-
cial source code, load the pre-trained models and perform
the calculation.

We only count the inference MACs in the diffusion stage
for a single time-step but exclude the computation cost for
the decoder for latent diffusion models.
Throughput. Throughput measures how many times a sys-
tem processes in a given amount of time. In our study, we
refer to the number of time steps that the diffusion model
runs within one second. It provides a fair comparison of
the running speed of different DPM architectures since it
precludes the influence of different sampling strategies.

4.2. Dataset Preprocessing

We follow the data preprocessing pipeline for VQ-
GAN1. We resize training images to 256 × 256 and nor-
malized to [−1, 1], without any augmentations and flipping.

4.3. Hyper-Parameters

Toy experiments. In our toy experiment in Sec.4.2,
each 40-dimensional signal is sampled from the f(x) =
cos(α2πx), x ∈ [0, 1]. It is concatenated with the time
step t and fed into the network with 41 input units, M ∈
{64, 1024} hidden units, and 40 output units. We use the ac-
tivation function of tanh in the hidden layer. The model’s
parameters are updated with an Adam optimizer [2] of a
constant learning rate of 1e-3. We adopt a mini-batch size
of 1,000 and train the network for 10,000 iterations.

1https://github.com/CompVis/taming-transformers

Hyper-Parameters for SD. We provide the hyper-
parameters of all experiments in Table 2 and Table 3. In
experiments, we use the /texttt[Haar] wavelet transform.

4.4. Network Architecture

The detailed network architectures of our proposed SD
for all our experiments are specified in Table 4, Table 5,
Table 6 and Table 7. We highlight the our designed down-
sample and up-sample with WG-Down and WG-Up.

5. Source Code
All our source code is provided in the Supplementary

Material code.zip. Please refer to README.md file for
more information.
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Auto-Encoder f=4,VQVAE (Z=8192, d=3)
Input Size Configuration

Down1 64× 64
3×Resblock, channel=64

WG-Down

Down2 32× 32
3×Resblock, channel=128

Self-Attn, head = 4
WG-Down

Down3 16× 16
3×Resblock, channel=192

Self-Attn, head = 6
WG-Down

Down4 8× 8
3×Resblock, channel=256

Self-Attn, head = 8
WG-Down

Mid-Stage 4× 4
Resblock, channel=256

Self-Attn, head = 8
Resblock, channel=256

Up4 4× 4
3×Resblock, channel=256

Self-Attn, head = 8
WG-Up

Up3 8× 8
3×Resblock, channel=192

Self-Attn, head = 6
WG-Up

Up2 16× 16
3×Resblock, channel=128

Self-Attn, head = 4
WG-Up

Up1 32× 32
3×Resblock, channel=64

WG-Up

Table 4. Network Architecture for on FFHQ, CelebA-HQ and LSUN-Bedroom dataset.

Auto-Encoder f=8, KL-VAE

Input Size Configuration

Down1 32× 32

2×Resblock, channel=64
Self-Attn, head = 32

WG-Down

Down2 16× 16

2×Resblock, channel=128
Self-Attn, head = 4

WG-Down

Down3 8× 8

2×Resblock, channel=128
Self-Attn, head = 4

WG-Down

Down4 4× 4

2×Resblock, channel=256
Self-Attn, head = 8

WG-Down

Down5 2× 2
2×Resblock, channel=256

WG-Down

Mid-Stage 1× 1

Resblock, channel=256
Self-Attn, head = 8

Resblock, channel=256

Up5 1× 1
2×Resblock, channel=256

WG-Up

Up4 2× 2

2×Resblock, channel=256
Self-Attn, head = 8

WG-Up

Up3 4× 4

2×Resblock, channel=128
Self-Attn, head = 4

WG-Up

Up2 8× 8

2×Resblock, channel=128
Self-Attn, head = 4

WG-Up

Up1 16× 16

2×Resblock, channel=64
Self-Attn, head = 2

WG-Up

Table 5. Network Architecture for on LSUN-Church dataset.
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Auto-Encoder f=4,VQVAE (Z=8192, d=3)
Input Size Configuration

Class Embedding 1000 nn.Embedding(1000, 512)

Down1 64× 64
3×Resblock, channel=64

WG-Down

Down2 32× 32
3×Resblock, channel=128

Self-Attn+Cross-Attn, head = 4
Cond: 512× 1 WG-Down

Down3 16× 16
3×Resblock, channel=192

Self-Attn+Cross-Attn, head = 6
Cond: 512× 1 WG-Down

Down4 8× 8
3×Resblock, channel=256

Self-Attn+Cross-Attn, head = 8
Cond: 512× 1 WG-Down

Mid-Stage 4× 4
Resblock, channel=256

Self-Attn+Cross-Attn, head = 8
Cond: 512× 1 Resblock, channel=256

Up4 4× 4
3×Resblock, channel=256

Self-Attn+Cross-Attn, head = 8
Cond: 512× 1 WG-Up

Up3 8× 8
3×Resblock, channel=192

Self-Attn+Cross-Attn, head = 6
Cond: 512× 1 WG-Up

Up3 16× 16
3×Resblock, channel=128

Self-Attn+Cross-Attn, head = 4
Cond: 512× 1 WG-Up

Up1 32× 32
3×Resblock, channel=64

WG-Up

Table 6. Network Architecture for on class-conditioned ImageNet dataset.

Auto-Encoder f=8,KL-VAE
Input Size Configuration

Text-encoder - clip-vit-large-patch14

Down1 32× 32
2×Resblock, channel=128

Self-Attn+Cross-Attn, head = 4
Cond: 768× 77 WG-Down

Down2 16× 16
2×Resblock, channel=256

Self-Attn+Cross-Attn, head = 8
Cond: 768× 77 WG-Down

Down3 8× 8
2×Resblock, channel=512

Self-Attn+Cross-Attn, head = 16
Cond: 768× 77 WG-Down

Down4 4× 4
2×Resblock, channel=512

WG-Down

Mid-Stage 2× 2
Resblock, channel=512

Self-Attn+Cross-Attn, head = 16
Cond: 768× 77 Resblock, channel=256

Up4 2× 2
2×Resblock, channel=512

WG-Up

Up3 4× 4
2×Resblock, channel=512

Self-Attn+Cross-Attn, head = 16
Cond: 768× 77 WG-Up

Up3 8× 8
2×Resblock, channel=256

Self-Attn+Cross-Attn, head = 8
Cond: 768× 77 WG-Up

Up1 16× 16
2×Resblock, channel=128

Self-Attn+Cross-Attn, head = 4
Cond: 768× 77 WG-Up

Table 7. Network Architecture for on text-conditioned LAION-400M and MS-COCO dataset.
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