
In this supplementary material, we present:

• A: Post-training weight distribution.

• B: Detailed derivation for gradient filtering described
in Section 3.

• C: Detailed proof for Proposition 1 in Section 4.1.

• D: Visualized computation analysis for ResNet18.

• E: Detailed experimental setup for Section 5.1.

• F: More experimental results for Semantic Segmenta-
tion in Section 5.3.

• G: More experimental results for hyper-parameter ex-
ploration on CIFAR datasets in Section 5.4.

• H: Experimental results for combining gradient filter-
ing (our method) with existing INT8 gradient quanti-
zation approaches [4, 7].

• I: More experimental results for on-device perfor-
mance evaluation in Section 5.5.

A. Post-training Weight Distribution

0.03 0.02 0.01 0.00 0.01

0.005

0.000

0.005

Ke
rn

el
 P

ro
je

ct
io

n

(a) BP With Our Gradient Filter
Calibrated
Grad. Filter (GF)

0.02 0.00 0.02

0.02

0.01

0.00

0.01
(b) Vanilla BP

Calibrated
Vanilla BP

-90 0 90 180 270
(c) Direction Distribution of Kernel Update (Arrows in (a) & (b)) [deg]

0

20000

40000

Co
un

t

Grad. Filter (GF)
Vanilla BP

Figure 7. PCA projections of convolution kernels in the bottleneck
layer of UperNet. Each point represents a 3 × 3 kernel. (a-b)
compare the kernel before training (calibrated) and kernel trained
with vanilla BP and our GF. (c) shows the distribution of directions
[degree] in which the kernel was updated during training.

Figure 7 shows the PCA projections of convolution ker-
nels in the bottleneck layer of an UperNet. Since our gradi-
ent filter (GF) only keeps the low-frequency part of the gra-
dient signal (see Equation (7)), after applying the gradient
filter, only the low-frequency part of the model is updated.
As a result, as shown in Figure 7 (a) and (c), using the gra-
dient filter limits the weights update to horizontal directions
(0◦ and 180◦), as opposed to using vanilla back propagation
(BP) where all directions are involved (Figure 7 (b) and (c)).

B. Gradient Filtering Derivation

In this section, we present the complete derivations for
Equation (3) and Equation (5) in Section 3, namely the back
propagation with gradient filtering. For convenience, Ta-
ble 6 (reproduced from Table 1 in paper) lists commonly
used symbols.

B.1. Gradient Filtering

We have:

g̃y[n, co, h, w] =
1

r2

⌈i/r⌉r∑
h=⌊i/r⌋r

⌈j/r⌉r∑
w=⌊j/r⌋r

gy[n, co, i, j] (17)

Thus, for any entry in the approximated gradient g̃y , the
value equals to the average of all neighboring elements
within the same r × r patch, as shown in Figure 2 in the
main manuscript. For the approximated gradient g̃y with
batch size n, channel c, resolution (Hy,Wy), there will be
(n× c×⌈Hy

r ⌉× ⌈Wy

r ⌉) unique numbers in g̃y . To simplify
the following derivations, we rewrite the approximated gra-
dient g̃y as follows:

g̃py [n, co, hp, wp, i, j] = g̃y[n, co, hp∗r+i, wp∗r+j] (18)

where (hp, wp) is the position of the patch and (i, j) is the
offset within the patch. Since every element in the same
patch has the exact same value, we denote this unique value
with g̃uy , i.e.,

g̃uy [n, co, hp, wp] = g̃py [n, co, hp, wp, i, j],∀0 ≤ i, j < r
(19)

Cx Number of channels of x
Wx, Hx Width and height of x

θ Convolution kernel
θ′ Rotated θ, i.e., θ′ = rot180(θ)
r Patch size (r × r)

gx, gy, gθ Gradients w.r.t. x, y, θ
g̃y Approximated gradient gy

x̃, θ̃′
Sum of x and θ′ over

spatial dimensions (height and width)

x[n, ci, h, w]
Element for feature map x

at batch n, channel ci, pixel (h,w)

θ[co, ci, u, v]
Element for convolution kernel θ

at output channel co, input channel ci,
position (u, v)

Table 6. Table of symbols we use.



B.2. Approximation for Rotated Convolution Ker-
nel θ′

θ̃′[co, ci] =
∑
u,v

θ′[co, ci, u, v]

=
∑
u,v

rot180(θ)[co, ci, u, v]

=
∑
u,v

θ[co, ci, u, v]

(20)

B.3. Approximation for Input Feature x

x̃[n, ci, h, w] =

⌈i/r⌉r∑
h=⌊i/r⌋r

⌈j/r⌉r∑
w=⌊j/r⌋r

x[n, ci, i, j] (21)

Thus for every entry in approximated feature map x̃, the
value equal to the sum of all neighboring elements within
the same r × r patch. Following the definition of the gra-
dient filter in Section B.1, we use the following symbols to
simplify the derivation:

x̃p[n, ci, hp, wp, i, j] = x̃[n, ci, hp ∗ r+ i, wp ∗ r+ j] (22)

and

x̃u[n, ci, hp, wp] = x̃p[n, ci, hp, wp, i, j],∀0 ≤ i, j < r
(23)

B.4. Boundary Elements

As mentioned in Section 3, given the structure created
by the gradient filters, the gradient propagation in a con-
volution layer can be simplified to weights summation and
multiplication with few unique gradient values. This is true
for all elements far away from the patch boundary because
for these elements, the rotated kernel θ′ only covers the ele-
ments from the same patch, which have the same value, thus
the computation can be saved. However, for the elements
close to the boundary, this is not true, since when convolv-
ing with boundary gradient elements, the kernel may cover
multiple patches with multiple unique values instead of just
one. To eliminate the extra computation introduced by the
boundary elements, we pad each patch sufficiently such that
every element is far away from boundary:

g̃py [n, ci, hp, wp, i, j] = g̃uy [n, ci, hp, wp],∀i, j ∈ Z (24)

For example, with the patch size 4 × 4, the element at the
spatial position (3, 3) is on the boundary, so when we calcu-
late g̃x[n, ci, 3, 3] by convolving the rotated kernel θ′ with
the approximated gradient g̃y:

g̃x[n, ci, 3, 3] =
∑
i,j

θ′[co, ci, i, j]g̃y[n, co, 3+i, 3+j] (25)

values of g̃y are from multiple patches and have differ-
ent values (e.g., g̃y[n, co, 3, 3] is from patch (0, 0) while
g̃y[n, co, 4, 4] is from patch (1, 1); they have different val-
ues). In our method, we simplify the Equation (25) by
rewriting it in the following way:

g̃x[n, ci, 3, 3]

≈
1∑

i,j=−1

θ′[co, ci, i, j]g̃
p
y [n, co, ⌊

3

4
⌋, ⌊3

4
⌋, 3 + i, 3 + j]

(26)

=

1∑
i,j=−1

θ′[co, ci, i, j]g̃
u
y [n, co, ⌊

3

4
⌋, ⌊3

4
⌋] (27)

=

1∑
i,j=−1

θ′[co, ci, i, j]g̃
u
y [n, co, 0, 0] (28)

where Equation (26) is derived from Equation (25) by con-
sidering that patch (0, 0) is sufficiently padded so that for
elements with all offsets (3 + i, 3 + j), they have the same
value, which is the unique value guy [n, co, 0, 0].

For approximated input feature map x̃, we apply the
same approximation for the boundary elements.

B.5. Gradient w.r.t. Input (Equation (3) in Section
3.4)

g̃x[n, ci, h, w] (29)

=
∑
co,u,v

θ[co, ci,−u,−v]g̃y[n, co, h+ u,w + v] (30)

≈
∑
co,u,v

θ[co, ci,−u,−v]·

g̃py [n, co, ⌊
h

r
⌋, ⌊w

r
⌋, (h mod r) + u, (w mod r) + v]

(31)

=
∑
co,u,v

θ[co, ci,−u,−v]g̃uy [n, co, ⌊
h

r
⌋, ⌊w

r
⌋] (32)

=
∑
co

g̃uy [n, co, ⌊
h

r
⌋, ⌊w

r
⌋]
∑
u,v

θ[co, ci,−u,−v] (33)

=
∑
co

g̃uy [n, co, ⌊
h

r
⌋, ⌊w

r
⌋]θ̃′[co, ci] (34)

By expanding g̃uy to g̃y , we have:

g̃x[n, ci, h, w] =
∑
co

g̃y[n, co, h, w]⊙ θ̃′[co, ci] (35)

which is the Equation (3) in Section 3 in the paper.
From Equation (30) to Equation (32), we consider that

the patch in the approximated gradient g̃y is padded suffi-
ciently so they have the same value for all possible offsets



((h mod r) + u, (w mod r) + v). If there is only one in-
put channel and output channel for the convolutional layer
as the Figure 2 in the paper shows, then Equation (34)
become an element-wise multiplication, which is Equa-
tion (35) (also the Equation (3) in the Section 3.4).

B.6. Gradient w.r.t. Convolution Kernel (Equation
(5) in the Section 3.4)

g̃θ[co, ci, u, v] (36)

=
∑
n,h,w

x[n, ci, h+ u,w + v]g̃y[n, co, h, w] (37)

≈
∑
n,h,w

x̃p[n, ci, ⌊
h

r
⌋, ⌊w

r
⌋, (h mod r) + u, (w mod r) + v]·

g̃uy [n, co, ⌊
h

r
⌋, ⌊w

r
⌋]

(38)

=
∑
n,h,w

x̃u[n, ci, ⌊
h

r
⌋, ⌊w

r
⌋]g̃uy [n, co, ⌊

h

r
⌋, ⌊w

r
⌋] (39)

=
∑
n,h,w

x̃u[n, ci, ⌊
h

r
⌋, ⌊w

r
⌋]g̃uy [n, co, ⌊

h

r
⌋, ⌊w

r
⌋] (40)

By expanding x̃u and g̃uy to x̃ and g̃y , respectively, we have:

g̃θ[co, ci, u, v] =
∑
n,i,j

x̃[n, ci, i, j]g̃y[n, co, i, j] (41)

which is precisely Equation (5) in Section 3.
From Equation (37) to Equation (39), we consider that

the patch in the approximated input feature map x̃ is padded
sufficiently thus they have the same value for all possible
offsets ((h mod r) + u, (w mod r) + v). For every given
input/output channel pair (co, ci), Equation (40) represents
the Frobenius inner product between x̃u and g̃uy .

C. Detailed Proof for Proposition 1
In this section, we provide more details to the proof in

Section 4.1. We use Gx, Gy and Θ to denote the gradients
gx, gy and the convolution kernel θ in the frequency domain,
respectively. Gx[u, v] is the spectrum value at frequency
(u, v) and δ is the 2D discrete Dirichlet function. Without
losing generality and to simplify the proof, we consider the
batch size is 1, the number of input/output channels is 1,
namely Cx = Cy = 1, and there is only one patch in g̃y .

The gradient returned by the gradient filtering can be
written as:

g̃y =
1

r2
1r×r ⊛ gy (42)

where ⊛ denotes convolution. By applying the discrete
Fourier transformation, Equation (42) can be rewritten in

the frequency domain as:

G̃y[u, v] =
1

r2
δ[u, v]Gy[u, v] (43)

g̃y is the approximation for gy(so the ground truth for g̃y is
gy), and the SNR of g̃y equals to:

SNRg̃y = (

∑
(u,v)(Gy[u, v],−G̃y[u, v])

2∑
(u,v) G

2
y[u, v]

)−1

= (

∑
(u,v)(Gy[u, v]− 1

r2 δ[u, v]Gy[u, v])
2∑

(u,v) G
2
y[u, v]

)−1

(44)
where the numerator can be written as:∑

(u,v)

(Gy[u, v]−
1

r2
δ[u, v]Gy[u, v])

2

=
∑

(u,v)̸=(0,0)

(Gy[u, v]−
1

r2
δ[u, v]Gy[u, v])

2

+ (Gy[0, 0]−
1

r2
δ[0, 0]Gy[0, 0])

2

(45)

Because δ[u, v] =

{
1 (u, v) = (0, 0)

0 (u, v) ̸= (0, 0)
, Equation (45) can

be written as:∑
(u,v) ̸=(0,0)

G2
y[u, v] +

(r2 − 1)2

r4
G2

y[0, 0]

=
∑

(u,v)̸=(0,0)

G2
y[u, v] +G2

y[0, 0]−G2
y[0, 0]

+
(r2 − 1)2

r4
G2

y[0, 0]

=
∑
(u,v)

G2
y[u, v]−

2r2 − 1

r4
G2

y[0, 0]

(46)

By substituting the numerator in Equation (44) with Equa-
tion (46), we have:

SNRg̃y = (

∑
(u,v) G

2
y[u, v]− 2r2−1

r4 G2
y[0, 0]∑

(u,v) G
2
y[u, v]

)−1

= (1− 2r2 − 1

r4
G2

y[0, 0]∑
(u,v) G

2
y[u, v]

)−1

= (1− 2r2 − 1

r4
Energy of DC Component in Gy

Total Energy5in Gy

)−1

(47)
For the convolution layer, the gradient w.r.t. approximated

variable x̃ in the frequency domain is:

G̃x[u, v] = Θ[−u,−v]G̃y[u, v]

=
1

r2
Θ[−u,−v]δ[u, v]Gy[u, v]

(48)

5As reminder, the total energy of a signal is the sum of energy in DC
component and energy in AC components.



and its ground truth is:

Gx[u, v] = Θ[−u,−v]Gy[u, v] (49)

Similar to Equation (47), the SNR of gx̃ is:

SNRg̃x = (1− 2r2 − 1

r4
Θ2[0, 0]G2

y[0, 0]∑
(u,v) Θ

2[u, v]G2
y[u, v]

)−1

= (1− 2r2 − 1

r4
G2

x[0, 0]∑
(u,v) G

2
x[u, v]

)−1

= (1− 2r2 − 1

r4
Energy of DC Component in Gx

Total Energy6in Gx

)−1

(50)
Equation (50) can be rewritten as:

r4(1− SNR−1
g̃x

)

2r2 − 1
=

(Θ[0, 0]Gy[0, 0])
2∑

(u,v)(Θ[−u,−v]Gy[u, v])2

=
G2

y[0, 0]∑
(u,v)(

Θ[−u,−v]
Θ[0,0] Gy[u, v])2

(51)

Besides, the proposition’s assumption (the DC component
dominates the frequency spectrum of Θ) can be written as:

Θ2[0, 0]

max(u,v) ̸=(0,0)Θ2[u, v]
≥ 1 (52)

which is:

∀(u, v), Θ
2[−u,−v]

Θ2[0, 0]
≤ 1 (53)

thus, by combining Equation (51) and Equation (53), we
have:

r4(1− SNR−1
g̃x

)

2r2 − 1
=

G2
y[0, 0]∑

(u,v)(
Θ[−u,−v]
Θ[0,0] Gy[u, v])2

≥
G2

y[0, 0]∑
(u,v)(Gy[u, v])2

=
r4(1− SNR−1

g̃y
)

2r2 − 1

(54)

which means that: SNRg̃x ≥ SNRg̃y . This completes our
proof for error analysis.■

In conclusion, as the gradient propagates, the noise in-
troduced by the gradient filter becomes weaker and weaker
compared to the real gradient signal. This property ensures
that the error in gradient has only a limited influence on the
quality of BP.

This proof can be extended to the more general case
where batch size and the number of channels are greater
than 1 by introducing more dimensions (i.e., batch dimen-
sion, channel dimension) into all equations listed above.

D. Computation Analysis for ResNet18
In this section, we provide one more example for compu-

tation analysis in Section 4.2. Figure 8 shows the computa-
tion required by the convolution layers from ResNet18 with
different patch sizes for gradient filtering. With reduced
unique elements, our approach reduces the number of com-
putations to 1/r2 of standard BP method; with structured
gradient, our approach further reduces the number of com-
putations to about 1/(r2HθWθ) of standard BP method.

E. Detailed Experimental Setup
In this section, we extend the experimental setup in Sec-

tion 5.1.

E.1. ImageNet Classification

E.1.1 Environment

ImageNet related experiments are conducted on IBM Power
System AC922, which is equipped with a 40-core IBM
Power 9 CPU, 256 GB DRAM and 4 NVIDIA Tesla V100
16GB GPUs. We use PyTorch 1.9.0 compiled with CUDA
10.1 as the deep learning framework.

E.1.2 Dataset Split

We split the dataset into two non-i.i.d. partitions following
the FedAvg method [24]. The label distribution is shown
in Figure 9. Among all 1000 classes for the ImageNet,
pretrain and finetune partitions overlap on only 99 classes,
which suggests that our method can efficiently adapt the
CNN model to data collected from new environments. For
each partition, we randomly select 80% data as training data
and 20% as validation data.

E.1.3 Pretraining

We pretrain ResNet 18, ResNet 34, MobileNet-V2 and
MCUNet with the same configuration. We use SGD opti-
mizer. The learning rate of the optimizer starts at 0.05 and
decays according to cosine annealing method [22] during
training. Additionally, weight decay is set to 1 × 10−4 and
momentum is set to 0.9. We set batch size to 64. We ran-
domly resize, randomly flip and normalize the image for
data augmentation. We use cross entropy as loss function.
Models are trained for 200 epochs and the model with the
highest validation accuracy is kept for finetuning. Table 7
shows the pretrain accuracy.

E.1.4 Finetuning

We adopt the hyper-parameter (e.g., momentum, weight de-
cay, etc.) from pretraining. Several changes are made: mod-
els are finetuned for 90 epochs instead of 200; we apply



1 × 1 3 × 3 5 × 5 7 × 7
Patch Size r × r

1M

10M

100M
FL

OP
s

Baseline Reduced
Unique
Elements

+Structured
Gradient

Actual

Minimum
Achievable Computation

(a) Last convolutional layer in block 4 of ResNet18 with 512 input/output
channels; the resolution of input feature map is 7× 7.

1 × 1 4 × 4 8 × 8 12 × 12
Patch Size r × r

100K

1M

10M

100M

FL
OP

s

Baseline Reduced
Unique
Elements

+Structured
Gradient

Actual

Minimum
Achievable Computation

(b) Last convolutional layer in block 3 of ResNet18 with 256 input/output
channels; the resolution of input feature map is 14× 14.

1 × 1 10 × 10 20 × 20
Patch Size r × r

100K

1M

10M

100M

FL
OP

s

Baseline Reduced
Unique
Elements

+Structured
Gradient

Actual
Minimum
Achievable Computation

(c) Last convolutional layer in block 2 of ResNet18 with 128 input/output
channels; the resolution of input feature map is 28× 28.

Figure 8. Computation analysis for three convolution layers in
of ResNet18 model. Since convolutional layers in every block
of ResNet18 is similar, we use the last convolutional layer as the
representative of all convolutional layers in the block. Minimum
achievable computation is presented in Equation (16) in the pa-
per. By reducing the number of unique elements, computations
required by our approach drop to about 1/r2 compared with the
standard BP method. By combining it (“+” in the figure) with
structured gradient map, computations required by our approach
drop further.

Model Accuracy Model Accuracy
ResNet-18 73.5% MobileNet-V2 74.3%
ResNet-34 76.4% MCUNet 71.4%

Table 7. Model pretraining accuracy on ImageNet.

0 200 400 600 800 1000
Class Index

0

200

400

600

800

1000

Im
ag

e 
Co

un
t

ImageNet Data Split
Pretrain
Finetune

Figure 9. Label distribution for pretraining and finetuning datasets.
Pretraining and finetuning partitions are split from ImageNet
dataset.

L2 gradient clipping with threshold 2.0; linear learning rate
warm-up for 4 epochs is introduced at the beginning of fine-
tuning, i.e., for the first 4 epochs, the learning rate grows
linearly up to 0.05, then the learning rate decays accord-
ing to cosine annealing method in the following epochs. Of
note, to ensure a fair comparison, we use the same hyper-
parameters for all experiments, regardless of model type
and training strategy.

E.2. CIFAR Classification

E.2.1 Environment

CIFAR related experiments are conducted on a GPU work-
station with a 64-core AMD Ryzen Threadripper PRO
3995WX CPU, 512 GB DRAM and 4 NVIDIA RTX A6000
GPUs. We use PyTorch 1.12.0 compiled with CUDA 11.6
as the deep learning framework.

E.2.2 Dataset Split

We split the dataset into two non-i.i.d. partitions following
FedAvg method. The label distribution is shown in Figure
10. For CIFAR10, pretrain and finetune partitions overlap
on 2 classes out of 10 classes in total. For CIFAR100, pre-
train and finetune partitions overlap on 6 classes out of 100
classes.

E.2.3 Pretraining

We pretrain ResNet18 and ResNet34 with the same config-
uration. We use the ADAM optimizer with a learning rate
of 3 × 10−4 and weight decay 1 × 10−4 with no learning
rate scheduling method. We use cross entropy as loss func-
tion. We set batch size to 128, and normalize the data be-
fore feeding it to the model. Models are trained for 30 and
50 epochs for CIFAR10 and CIFAR100, respectively. Then,
the model with the highest accuracy is kept for finetuning.
Table 8 shows the pretrain accuracy.



0 2 4 6 8
Class Index

0

1000

2000

3000

4000

Im
ag

e 
Co

un
t

CIFAR10 Data Split
Pretrain
Finetune

0 20 40 60 80 100
Class Index

0

100

200

300

400

Im
ag

e 
Co

un
t

CIFAR100 Data Split
Pretrain
Finetune

Figure 10. Label distribution for pretraining and finetuning
datasets on CIFAR10 and CIFAR100. Pretraining and finetuning
partitions are split from CIFAR10/100, respectively.

ResNet18 ResNet34
CIFAR10 95.1% 97.6%

CIFAR100 75.5% 83.5%

Table 8. Model pretraining accuracy on CIFAR10/100.

E.2.4 Finetuning

We adopt the training configuration from PSQ [7] with
some changes. We use cross entropy loss with SGD opti-
mizer for training. The learning rate of the optimizer starts
at 0.05 and decays according to cosine annealing method
during training. Momentum is set to 0 and weight decay
is set to 1 × 10−4. We apply L2 gradient clipping with
a threshold 2.0. Batch normalization layers are fused with
convolution layers before training, which is a common tech-
nique for inference acceleration.

E.3. Semantic Segmentation

E.3.1 Environment

ImageNet related experiments are conducted on IBM Power
System AC922, which is equipped with a 40-core IBM
Power 9 CPU, 256 GB DRAM and 4 NVIDIA Tesla V100
16GB GPUs. We use PyTorch 1.9.0 compiled with CUDA
10.1 as the deep learning framework. We implement our
method based on MMSegmentation 0.27.0.

E.3.2 Pretraining

We use models pretrained by MMSegmentation. Consider-
ing that the numbers of classes, image statistics, and model
hyper-parameters may be different when applying on dif-
ferent datasets, we calibrate the model before finetuning.

We use SGD optimizer. The learning rate of the optimizer
starts at 0.01 and decays exponentially during training. Ad-
ditionally, weight decay is set to 5 × 10−4 and momentum
is set to 0.9. We set batch size to 8. We randomly crop, flip
and photo-metric distort and normalize the image for data
augmentation. We use cross entropy as loss function. For
DeepLabV3, FCN, PSPNet and UPerNet, we calibrate the
classifier (i.e., the last layer) and statistics in batch normal-
ization layers for 1000 steps on the finetuning dataset. For
DeepLabV3-MobileNetV2 and PSPNet-MobileNetV2, be-
cause the number of channels for convolutional layers in
the decoder are different for models applied on different
datasets, we calibrate the decoder and statistics in batch nor-
malization layers for 5000 steps on the finetuning dataset.

E.3.3 Finetuning

We finetune all models with the same configuration. We use
the SGD optimizer. The learning rate of the optimizer starts
at 0.01 and decays according to cosine anneling method dur-
ing training. Additionally, weight decay is set to 5 × 10−4

and momentum is set to 0.9. We set batch size to 8. We
randomly crop, flip and photo-metric distort and normalize
the image for data augmentation. We use cross entropy as
loss function. Models are finetuned for 20000 steps. Exper-
iments are repeated three times with random seed 233, 234
and 235.

E.4. On-device Performance Evaluation

E.4.1 NVIDIA Jetson Nano

We use NVIDIA Jetson Nano with quad-core Cortex-A57,
4 GB DRAM, 128-core Maxwell edge GPU for perfor-
mance evaluation on both edge CPU and edge GPU. We
use the aarch64-OS Ubuntu 18.04.6 provided by NVIDIA.
During evaluation, the frequencies for CPU and GPU are
1.5 GHz and 921 MHz, respectively. Our code and library
MKLDNN (a.k.a. OneDNN) are compiled on Jetson Nano
with GCC 7.5.0, while libraries CUDA and CUDNN are
compiled by NVIDIA. For CPU evaluations, our code and
baseline are implemented with MKLDNN v2.6. For GPU
evaluations, our code and baseline are implemented with
CUDA 10.2 and CUDNN 8.2.1.

Before the evaluation for every test case, we warm up
the device by running the test once. Then we repeat the test
10 times and report the average value for latency, energy
consumption, etc.

Energy consumption is obtained by reading the embed-
ded power meter in Jetson Nano every 20 ms.

E.4.2 Raspberry Pi-3b

We use Raspberry Pi-3b with quad-core Cortex-A53, 1
GB DRAM for performance evaluation on CPU. We use



Pretrain: ADE20K Finetune: VOC12Aug
UPerNet #Layers GFLOPs mIoU mAcc PSPNet-M #Layers GFLOPs mIoU mAcc DLV3-M #Layers GFLOPs mIoU mAcc

Calibration 0 0 37.66 50.03 Calibration 0 0 30.93 52.01 Calibration 0 0 35.28 56.98

Vanilla BP
All 541.0 67.23[0.24] 79.79[0.45]

Vanilla BP
All 42.41 53.51[0.27] 67.01[0.19]

Vanilla BP
All 54.35 60.78[0.21] 74.10[0.40]

5 503.9 72.01[0.09] 81.97[0.30] 5 12.22 48.88[0.11] 62.67[0.31] 5 14.77 51.51[0.09] 66.08[0.44]
10 507.6 72.01[0.19] 81.83[0.44] 10 22.46 53.71[0.29] 67.93[0.32] 10 33.10 57.63[0.10] 71.93[0.41]

Ours 5 1.97 71.76[0.11] 81.57[0.07] Ours 5 0.11 48.59[0.08] 62.28[0.30] Ours 5 0.26 49.40[0.00] 64.13[0.54]
10 2.22 71.78[0.23] 81.55[0.38] 10 0.76 52.77[0.37] 66.82[0.47] 10 1.40 55.14[0.15] 69.48[0.26]

Pretrain: ADE20K Finetune: Cityscapes
UPerNet #Layers GFLOPs mIoU mAcc PSPNet-M #Layers GFLOPs mIoU mAcc DLV3-M #Layers GFLOPs mIoU mAcc

Calibration 0 0 34.15 42.45 Calibration 0 0 28.83 34.85 Calibration 0 0 41.33 48.65

Vanilla BP
All 1082.1 73.02[0.14] 81.01[0.20]

Vanilla BP
All 84.82 60.21[0.40] 67.72[0.68]

Vanilla BP
All 108.7 71.12[0.14] 79.81[0.04]

5 1007.7 62.46[0.19] 72.62[0.27] 5 24.43 42.09[0.43] 48.70[0.49] 5 29.5 51.00[0.05] 59.20[0.03]
10 1015.3 64.01[0.21] 73.11[0.32] 10 44.90 54.03[0.24] 61.48[0.10] 10 66.2 61.02[0.14] 69.80[0.06]

Ours 5 3.94 60.58[0.25] 70.67[0.32] Ours 5 0.22 41.59[0.38] 48.10[0.41] Ours 5 0.50 48.83[0.07] 56.87[0.08]
10 4.43 62.14[0.24] 71.41[0.27] 10 1.51 49.10[0.49] 56.93[1.43] 10 2.74 50.22[1.01] 59.99[0.31]

Table 9. Experimental results for semantic segmentation task for UPerNet, DeepLabV3-MobileNetV2 (DLV3-M) and PSPNet-
MobileNetV2 (PSPNet-M). Models are pretrained on ADE20K dataset and finetuned on augmentated Pascal VOC12 dataset and Cityscapes
dataset respectively. “#Layers” is short for “the number of active convolutional layers” that are trained. Strategy “Calibration” shows the
accuracy when only the classifier and normalization statistics are updated to adapt differences (e.g. different number of classes) between
pretraining dataset and finetuning dataset.

No. #Input Channel #Output Channel Input Width Input Height
0 128 128 120 160
1 256 256 60 80
2 512 512 30 40
3 512 512 14 14
4 256 256 14 14
5 128 128 28 28
6 64 64 56 56

Table 10. Layer configuration for test cases in Figure 6 in Section
5.5 in the paper.

the aarch64-OS Raspberry Pi OS. During evaluation, the
frequency for CPU is 1.2 GHz. Our code and library
MKLDNN are compiled on Raspberry Pi with GCC 10.2.
Our code and baseline are implemented with MKLDNN
v2.6.

Before the evaluation for every test case, we warm up the
device by running the test once. Then we repeat the test 10
times and report the average value for latency, etc.

E.4.3 Desktop

We use a desktop PC with Intel 11900KF CPU, 32 GB
DRAM and RTX 3090 Ti GPU for perforamce evaluation
on both desktop CPU and desktop GPU. We use x86 64-
OS Ubuntu 20.04. During evaluation, the frequencies for
CPU and GPU are 4.7 GHz and 2.0 GHz respectively. Our
code is compiled with GCC 9.4.0. MKLDNN is compiled
by Anaconda (tag omp h13be974 0). CUDA and CUDNN
are compiled by NVIDIA. For CPU evaluations, our code
and baseline are implemented with MKLDNN v2.6. For
GPU evaluations, our code and baseline are implemented
with CUDA 11.7 and CUDNN 8.2.1.

Before the evaluation for every test case, we warm up the
device by running the 10 times. Then we repeat the test 200
times and report the average value for latency, etc.

E.4.4 Test Case Configurations

Table 10 lists the configurations for test cases shown in Fig-
ure 6 in the paper. In addition to the parameters shown in
the table, for all test cases, we set the batch size to 32, kernel
size to 3× 3, padding and stride to 1.

F. More Results for Semantic Segmentation

In this section, we extend the experimental results shown
in Section 5.3 (Table 3). Table 9 shows the experimental re-
sults for UPerNet, PSPNet-MobileNetV2 (PSPNet-M) and
DeepLabV3-MobileNetV2 (DLV3-M) on two pairs of pre-
traing and finetuning datasets. These results further show
the effectiveness of our method on a dense prediction task.

G. More Results for CIFAR10/100 with Differ-
ent Hyper-Parameter Selections

In this section, we extend the experimental results shown
in Section 5.4 (Figure 4). Table 11 shows the experimental
results for ResNet18 and ResNet34 on CIFAR datasets. For
every model, we test our method with different patch sizes
for gradient filtering and different numbers of active convo-
lutional layers (#Layers in Table 11, e.g., if #Layers equals
to 2, the last two convolutional layers are trained while other
layers are frozen). These results further support the qualita-
tive findings in Section 5.4.

H. Results for Combining Gradient Filtering
with Gradient Quantization

In this section, we provide experimental results for com-
bining our method, i.e. gradient filtering, with gradi-
ent quantization. Table 12 shows experimental results for
ResNet18 and ResNet32 with gradient quantization meth-
ods PTQ [4] and PSQ [7] and different hyper-parameters.



CIFAR10 CIFAR100
ResNet18 #Layers ACC[%] FLOPs ResNet34 #Layers ACC[%] FLOPs ResNet18 #Layers ACC[%] FLOPs ResNet34 #Layers ACC[%] FLOPs

Vanilla
BP

1 91.7 128.25M
Vanilla

BP

1 94.2 128.25M
Vanilla

BP

1 73.8 128.39M
Vanilla

BP

1 76.9 128.39M
2 93.6 487.68M 2 96.6 487.68M 2 77.6 487.82M 2 82.0 487.82M
3 93.7 847.15M 3 96.6 847.13M 3 77.6 847.29M 3 82.1 847.27M
4 94.4 1.14G 4 96.8 1.21G 4 78.0 1.14G 4 83.0 1.21G

+Gradient
Filter
R2

1 91.5 8.18M +Gradient
Filter
R2

1 94.2 8.18M +Gradient
Filter
R2

1 73.7 8.31M +Gradient
Filter

R2

1 77.0 8.31M
2 92.7 26.80M 2 96.6 26.80M 2 75.6 26.94M 2 81.1 26.94M
3 92.8 45.45M 3 96.5 45.44M 3 75.6 45.59M 3 81.1 45.58M
4 93.9 60.01M 4 96.6 64.07M 4 76.4 60.15M 4 82.0 64.21M

+Gradient
Filter
R4

1 91.4 1.88M +Gradient
Filter
R4

1 94.3 1.88M +Gradient
Filter
R4

1 73.7 2.02M +Gradient
Filter

R4

1 76.9 2.02M
2 92.7 7.93M 2 96.4 7.93M 2 74.9 8.07M 2 80.4 8.07M
3 92.8 13.99M 3 96.4 13.98M 3 74.9 14.12M 3 80.4 14.12M
4 93.3 19.12M 4 96.1 20.04M 4 75.2 19.26M 4 80.5 20.17M

+Gradient
Filter
R7

1 91.5 303.10K +Gradient
Filter
R7

1 94.2 303.10K +Gradient
Filter
R7

1 73.7 441.34K +Gradient
Filter

R7

1 76.9 441.34K
2 91.5 3.21M 2 95.8 3.21M 2 74.1 3.35M 2 80.4 3.35M
3 91.7 6.12M 3 96.0 6.12M 3 74.1 6.26M 3 80.3 6.26M
4 92.6 8.90M 4 96.0 9.03M 4 75.4 9.04M 4 80.3 9.17M

Table 11. Experimental results on CIFAR10 and CIFAR100 datasets for ResNet18 and ResNet34 with different hyper-parameter selections.
“ACC” is short for accuracy. “#Layers” is short for “the number of active convolution layers”. For example. #Layers equals to 2 means that
only the last two convolutional layers are trained. “Gradient Filter R2/4/7” use proposed gradient filtering method with patch size 2 × 2,
4× 4 and 7× 7, respectively.

0 1 2 3 4 5 6
0×

20×

40×

60×

80×

100×

120×

En
er

gy
 S

av
in

gs
 [×

tim
es

] CPU Energy Savings
Jetson-R2
Jetson-R4

0 1 2 3 4 5 6
0×

20×

40×

60×

80×

100×
GPU Energy Savings

Jetson-R2
Jetson-R4

0 1 2 3 4 5 6
Test Case - Baseline: MKLDNN

0

25

50

75

100

Pe
rc

en
ta

ge
 [%

] Forward Cost

20% Overhead

Normalized CPU Overhead
Jetson-R2
Jetson-R4
11900KF-R2

11900KF-R4
RPi3-R2
RPi3-R4

0 1 2 3 4 5 6
Test Case - Baseline: CUDNN

0

20

40

60

80

100
Forward Cost

20% Overhead

Normalized GPU Overhead
Jetson-R2
Jetson-R4
RTX3090Ti-R2
RTX3090Ti-R4

Figure 11. Energy savings and overhead resuls on multiple CPUs and GPUs under different test cases (i.e., different input sizes, number of
channels, etc..). For test case 4 and 5 with patch size 4 × 4 (Jetson-R4) on GPU, the latency of our method is too small to be captured by
the power meter with a 20 ms sample rate so the energy savings data is not available. For most test cases with patch size 4× 4, our method
achieves over 80× energy savings with less than 20% overhead.

Both forward propagation and backward propagation are
quantized to INT8. These results support the wide appli-
cability of our method.

I. More Results for On-device Performance
Evaluation

In this section, we extend the experimental results shown
in Section 5.5. Figure 11 shows the energy savings and
overhead of our method. For most test cases with patch
4 × 4, we achieve over 80× energy savings with less than
20% overhead on both CPU and GPU. Moreover, for the
test case 1 on Raspberry Pi-3b CPU, the forward propaga-
tion is even faster when applied our method (which results

in negtive overheads). These results further show that our
method is practical for the real deployment of both high-
performance and IoT applications.



CIFAR10 CIFAR100
ResNet18 ResNet34 ResNet18 ResNet34

Strategy #Layers ACC[%] #OPs Strategy #Layers ACC[%] #OPs Strategy #Layers ACC[%] #OPs Strategy #Layers ACC[%] #OPs

PTQ

1 91.6 128.25M

PTQ

1 93.6 128.25M

PTQ

1 74.0 128.39M

PTQ

1 76.4 128.39M
2 93.2 487.68M 2 96.2 487.68M 2 77.8 487.82M 2 80.3 487.82M
3 93.5 847.15M 3 96.2 847.13M 3 77.9 847.29M 3 80.5 847.27M
4 94.4 1.14G 4 96.5 1.21G 4 77.9 1.14G 4 82.2 1.21G

PTQ
+Gradient

Filter
R2

1 91.4 8.18M PTQ
+Gradient

Filter
R2

1 93.5 8.18M PTQ
+Gradient

Filter
R2

1 73.9 8.31M PTQ
+Gradient

Filter
R2

1 76.5 8.31M
2 92.6 26.80M 2 95.9 26.80M 2 75.7 26.94M 2 80.0 26.94M
3 92.7 45.45M 3 96.0 45.44M 3 75.9 45.59M 3 80.1 45.58M
4 93.7 60.01M 4 96.2 64.07M 4 76.3 60.15M 4 80.9 64.21M

PTQ
+Gradient

Filter
R4

1 91.3 1.88M PTQ
+Gradient

Filter
R4

1 93.6 1.88M PTQ
+Gradient

Filter
R4

1 73.7 2.02M PTQ
+Gradient

Filter
R4

1 76.5 2.02M
2 92.5 7.93M 2 95.6 7.93M 2 75.1 8.07M 2 79.5 8.07M
3 92.7 13.99M 3 95.6 13.98M 3 75.4 14.12M 3 79.5 14.12M
4 93.4 19.12M 4 95.6 20.04M 4 76.1 19.26M 4 80.5 20.17M

PTQ
+Gradient

Filter
R7

1 91.2 303.10K PTQ
+Gradient

Filter
R7

1 93.6 303.10K PTQ
+Gradient

Filter
R7

1 73.7 441.34K PTQ
+Gradient

Filter
R7

1 76.5 441.34K
2 91.5 3.21M 2 95.5 3.21M 2 74.5 3.35M 2 79.4 3.35M
3 91.6 6.12M 3 95.4 6.12M 3 74.5 6.26M 3 79.5 6.26M
4 92.6 8.90M 4 95.5 9.03M 4 75.3 9.04M 4 79.6 9.17M

PSQ

1 91.4 128.25M

PSQ

1 93.6 128.25M

PSQ

1 73.9 128.39M

PSQ

1 76.4 128.39M
2 93.3 487.68M 2 96.1 487.68M 2 77.7 487.82M 2 80.3 487.82M
3 93.4 847.15M 3 96.2 847.13M 3 77.9 847.29M 3 80.5 847.27M
4 94.5 1.14G 4 96.4 1.21G 4 78.0 1.14G 4 82.2 1.21G

PSQ
+Gradient

Filter
R2

1 91.3 8.18M PSQ
+Gradient

Filter
R2

1 93.5 8.18M PSQ
+Gradient

Filter
R2

1 73.8 8.31M PSQ
+Gradient

Filter
R2

1 76.4 8.31M
2 92.6 26.80M 2 96.0 26.80M 2 76.0 26.94M 2 80.1 26.94M
3 92.8 45.45M 3 96.1 45.44M 3 75.9 45.59M 3 80.0 45.58M
4 93.7 60.01M 4 96.1 64.07M 4 76.3 60.15M 4 80.9 64.21M

PSQ
+Gradient

Filter
R4

1 91.4 1.88M PSQ
+Gradient

Filter
R4

1 93.6 1.88M PSQ
+Gradient

Filter
R4

1 73.5 2.02M PSQ
+Gradient

Filter
R4

1 76.5 2.02M
2 92.6 7.93M 2 95.6 7.93M 2 75.3 8.07M 2 79.5 8.07M
3 92.7 13.99M 3 95.6 13.98M 3 75.1 14.12M 3 79.6 14.12M
4 93.2 19.12M 4 95.5 20.04M 4 76.2 19.26M 4 80.2 20.17M

PSQ
+Gradient

Filter
R7

1 91.2 303.10K PSQ
+Gradient

Filter
R7

1 93.6 303.10K PSQ
+Gradient

Filter
R7

1 73.5 441.34K PSQ
+Gradient

Filter
R7

1 76.5 441.34K
2 91.4 3.21M 2 95.5 3.21M 2 74.4 3.35M 2 79.5 3.35M
3 91.6 6.12M 3 95.4 6.12M 3 74.5 6.26M 3 79.6 6.26M
4 92.7 8.90M 4 95.5 9.03M 4 75.5 9.04M 4 79.6 9.17M

Table 12. Experimental results for ResNet18 and ResNet34 with different gradient quantization methods (i.e., PTQ [4] and PSQ [7]) and
hyper-parameter selections on CIFAR10/100. Feature map, activation, weight and gradient are quantized to INT8. “ACC” is short for
accuracy. “#Layers” is short for “the number of active convolution layers”. For example. #Layers equals to 2 means that the last two
convolutional layers are trained. “Gradient Filter R2/4/7” use proposed gradient filtering method with patch size 2 × 2, 4 × 4 and 7 × 7,
respectively.


