
Supplement to FreeNeRF: Improving Few-shot Neural Rendering with Free
Frequency Regularization

Project page: FreeNeRF

10% visible 20% visible 30% visible 50% visible 70% visible 100% visible

Figure A.1. High-frequency inputs cause catastrophic failure in few-shot neural rendering. We train mipNeRF [2] with masked
(integrated) positional encoding by setting pos enc[int(L*x%]):]=0, where L denotes the length of frequency bands (Eq. (1)) and
x is the masking ratio. Using low-frequency components as inputs enables mipNeRF to learn meaningful scene representations despite
their over-smoothness. Please refer to Figure 2 (in the main text) for numerical comparisons. We also provide animated visualizations on
our project page.

In this supplement, we include additional quantitative
and qualitative results to discuss more motivation and limi-
tations of FreeNeRF in Appendix A. We also add details of
experimental settings and implementations in Appendix B.

A. Additional Results

High-frequency inputs cause catastrophic failure. Fig-
ure A.1 shows more examples to demonstrate the failure
mode revealed in Figure 2 that the high-frequency inputs
lead to the catastrophic failure of few-shot neural render-
ing. When taking in 10% of the total embedding bits,
mipNeRF can successfully reconstruct scenes despite their
over-smoothness. However, with higher-frequency inputs,

the scene reconstructions become more unrecognizable and
collapse. This experimental finding lies at the heart of
FreeNeRF: by restricting the inputs to the low-frequency
components at the start of training, NeRF can start from sig-
nificantly stabilized scene representations at the early stage
of training. Upon these stable scene representations, NeRF
continues refining the details when high-frequency signals
become visible.

A.1. Limitations

In this subsection, we elaborate on the limitations and
showcase the failure cases of FreeNeRF.

Trade-off between PSNR and LPIPS. Figure 7 studies the

Ground Truth 20%-schedule 90%-schedule

Figure A.2. High-frequency details comparison. We show the
view synthesis results under the 9 input-view setting on the DTU
dataset. With enough view information, a shorter frequency reg-
ularization enables NeRF models to render more high-frequency
details.

effect of the duration of frequency regularization on PSNR
and LPIPS. From the figure, we observe a trade-off between
PSNR and LPIPS that a long-frequency curriculum usually
results in a high PSNR score but a low LPIPS score. For ex-
ample, under the 9 input-view setting, we obtain an object
PSNR of 25.59 and an object LPIPS of 0.117 with a 90%-
schedule and those of 25.38 and 0.096 with a 50%-schedule.
Visually, when the number of input views is relatively suf-
ficient (but still under few-shot settings), results under a
shorter schedule usually present more high-frequency de-
tails (see the zoom-in patch in Fig. A.2). We thus use 70%-
schedule and 50%-schedule for experiments under 6 and 9
input-view settings, respectively. We also found out that
training FreeNeRF longer can obtain better LPIPS perfor-
mance, e.g., 0.182 to 0.167 and 0.308 to 0.290 for DTU-3
and LLFF-3 settings, respectively.

Limitations of Locc. Over-regularization: our occlusion
regularization can lead to an incomplete white desk on the
DTU dataset due to over-regularization in some scenes, as
shown in Figure A.3-(a). Reducing the regularization range
of Locc can ease this issue. A set of per-scene tuned hyper-
parameters can potentially provide better results. Remote
floaters: Figure A.3-(b) shows some small cloudy floaters
far from the camera. Our occlusion regularization that pe-
nalizes near-camera dense fields does not solve this prob-
lem. However, we do not observe these remote floaters in
NeRF trained with only low-frequency inputs (10% visible).
That said, though significantly regularized and stabilized,
FreeNeRF still overfits to spurious occupancy to a certain
degree. Better performance is excepted if FreeNeRF further
exploits the low-frequency components to avoid such over-
fitting, leaving room for future work and improvements.

A.2. Depth Evaluation

Here we include results to compare the capability of dif-
ferent methods in depth estimation. As the datasets do not
have actual ground truth depth, we utilized depth maps gen-
erated by mipNeRFs that were trained on all views as a
substitute. FreeNeRF significantly improves its baseline,
mipNeRF. RegNeRF, with its patch-based geometry regu-

Ground Truth Ours default ()M = 10

(a) Examples of over-regularized white desk

(b) Remote floaters that are unrecognizable from depth maps

M = 5

Figure A.3. Limitations of occlusion regularization. (a) Aggres-
sive occlusion regularization results in incomplete white desks that
are visually annoying. Reducing the regularization range (from
M = 10 to M = 5) can alleviate the issue to some extent. (b)
Occlusion regularization does not solve remote floaters that are far
from cameras.

larization, achieves better performance on the object-centric
DTU dataset, while FreeNeRF performs better on the scene-
scale LLFF dataset without explicit geometry regulariza-
tion. This experiment demonstrates the different features
of FreeNeRF and RegNeRF, as well as the differences be-
tween DTU and LLFF datasets.

Error=kDpseu �Dpredk DTU obj depth error# LLFF depth error#
views 3 6 9 3 6 9
mipNeRF (baseline) 131.97 59.21 18.73 149.18 36.92 19.16
RegNeRF (explicit geo. reg.) 14.58 10.40 6.23 44.52 25.09 18.26
FreeNeRF 14.89 12.98 9.48 39.92 23.61 16.91

A.3. Additional Qualitative Results
Table A.1 provides more numeric results in addition to

Table 2 on the DTU dataset. FreeNeRF achieves the best
results under the “Average” metrics in most settings. How-
ever, we observe less improvement in terms of LPIPS. As
we analyze in Appendix A.1, the slight blurriness intro-
duced by FreeNeRF will result in a low LPIPS score. This
is a limitation that could be addressed in the future.

A.4. Additional Visualizations

Blender. In Figure A.4, we show more qualitative com-
parisons between DietNeRF [11] and our FreeNeRF on the
Blender dataset. From the zoom-in patches of DietNeRF’s
results, we see the generated patches are blurry and do
not reflect the same distribution of style as that of ground
truth. This is due to implicit semantics distillation behavior

Setting Object LPIPS # Object Average # Full-image LPIPS # Full-image Average #
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

SRF [5]
Trained on DTU

0.304 0.250 0.232 0.171 0.132 0.120 0.482 0.401 0.359 0.207 0.162 0.145
PixelNeRF [37] 0.270 0.232 0.220 0.147 0.115 0.100 0.401 0.340 0.323 0.154 0.119 0.105
MVSNeRF [4] 0.197 0.156 0.135 0.113 0.088 0.068 0.385 0.321 0.280 0.184 0.146 0.114
SRF ft [5] Trained on DTU

and
Optimized per Scene

0.281 0.225 0.205 0.162 0.114 0.093 0.431 0.353 0.325 0.196 0.143 0.125
PixelNeRF ft [37] 0.269 0.223 0.203 0.125 0.104 0.090 0.456 0.351 0.338 0.185 0.121 0.117
MVSNeRF ft [4] 0.197 0.155 0.135 0.113 0.089 0.069 0.384 0.319 0.278 0.185 0.146 0.113
mip-NeRF [2]

Optimized per Scene
0.353 0.198 0.092 0.323 0.148 0.056 0.655 0.394 0.209 0.485 0.231 0.098

DietNeRF [11] 0.314 0.201 0.173 0.243 0.101 0.068 0.574 0.336 0.277 0.383 0.149 0.098
RegNeRF [22] 0.190 0.117 0.089 0.112 0.071 0.047 0.341 0.233 0.184 0.189 0.118 0.079
mip-NeRF concat. (repro.)

Optimized per Scene
0.348 0.197 0.100 0.311 0.144 0.057 0.643 0.403 0.218 0.472 0.240 0.099

†RegNeRF concat. (repro.) 0.196 0.118 0.088 0.117 0.070 0.046 0.350 0.236 0.183 0.197 0.118 0.078
Our FreeNeRF 0.182 0.137 0.096 0.098 0.068 0.046 0.318 0.240 0.187 0.146 0.094 0.068

Table A.1. Quantitative comparison on DTU. We provide additional quantitative results to Table 2. Results in the bottom row are
reproduced by us, and others come from [22]. “concat.”: inputs concatenation (Eq. (2)). †ReNeRF: w/o. appearance regularization. The
best, second-best, and third-best entries are marked in red, orange, and yellow, respectively.

done by DietNeRF. In contrast, our FreeNeRF reconstructs
scenes closer to the ground truth.

DTU and LLFF. We provide more rendering results by
FreeNeRF in Figures A.5 and A.6 under the 3 input-view
setting on the DTU dataset and the LLFF dataset, respec-
tively.

A.5. FreeNeRF for Normal Estimation
We briefly demonstrate a potential FreeNeRF’s applica-

tion beyond few-shot neural rendering. Specifically, we fol-
low the similar settings in RefNeRF [32] to train a mipNeRF
and a FreeNeRF on the “coffee” scene in the Shiny Blender
dataset [32]. This dataset aims to benchmark NeRF’s per-
formance on glossy surfaces, where the key challenge is
to estimate accurate normal vectors. Figure A.7 shows
the comparison between mipNeRF and FreeNeRF. Com-
pared to mipNeRF, FreeNeRF produces more accurate nor-
mal estimation and achieves much lower mean angular er-
ror (MAE) at no sacrifice of PSNR score. We conjecture
that overfitting to high-frequency signals at the start of train-
ing is a very common issue in NeRF’s training. However,
such partial failure is veiled by good appearance results. We
believe these partially degenerated results can be improved
with frequency regularization, which makes NeRF’s initial
training more stable.
B. Experiment Details

We strictly follow the experimental settings in DietNeRF
[11] and RegNeRF [22] to conduct our experiments. We
provide some details in the following for completeness.

B.1. Dataset and metrics.

Blender Dataset. The Blender dataset [21] has 8 syn-
thetic scenes in total. We follow the data split used in Diet-
NeRF [11] to simulate a few-shot neural rendering scenario.

For each scene, the training images with IDs (counting from
“0”) 26, 86, 2, 55, 75, 93, 16, 73, and 8 are used as the input
views, and 25 images are sampled evenly from the testing
images for evaluation. We follow [11] to use a 2⇥ down-
sampled resolution, resulting in 400 ⇥ 400 pixels for each
image.

DTU Dataset. The DTU dataset [12] is a large-scale multi-
view dataset that consists of 124 different scenes. Pixel-
NeRF [37] uses a split of 88 training scenes and 15 test
scenes to study the “pre-training & per-scene fine-tuning”
setting in a few-shot neural rendering scenario. Different
from theirs, our method does not require pre-training. We
follow [22] to optimize NeRF models directly on the 15 test
scenes. The test scan IDs are: 8, 21, 30, 31, 34, 38, 40, 41,
45, 55, 63, 82, 103, 110, and 114. In each scan, the images
with the following IDs (counting from “0”) are used as the
input views: 25, 22, 28, 40, 44, 48, 0, 8, 13. The first 3 and
6 image IDs correspond to the input views in 3- and 6-view
settings, respectively. The images with IDs in [1, 2, 9, 10,
11, 12, 14, 15, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 41,
42, 43, 45, 46, 47] serve as the novel views for evaluation.
The remaining images are excluded due to wrong exposure.
We follow [22, 37] to use a 4⇥ downsampled resolution,
resulting in 300⇥ 400 pixels for each image.

LLFF Dataset. The LLFF dataset [20] is a forward-facing
dataset that contains 8 scenes in total. Adhere to [21,22], we
use every 8-th image as the novel views for evaluation, and
evenly sample the input views across the remaining views.
Images are downsampled 8⇥, resulting in 378⇥ 504 pixels
for each image.

Metrics. To compute PSNR scores, we use the formula
�10 · log10(MSE) (assuming the maximum pixel value is
1). Additionally, we utilize the scikit-image’s API3 to com-

3https://scikit-image.org/docs/stable/auto_examples/

Ground Truth DietNeRF Ours

Lego

Chair

Materials

Mic

Figure A.4. Qualitative comparison on the Blender dataset. DietNeRF generates patches that can be reasonable and plausible to some
extent but do not closely match the ground truth. This is a limitation of using a pre-trained model for semantic regularization. In contrast,
our FreeNeRF reconstructs scenes that are more in line with the ground truth.

Scan8

Scan21

Scan30

Scan31

Scan34

Scan38

Scan40

Scan41

Scan45

Scan55

Scan63

Scan103

Scan82

Scan110

Scan114

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Figure A.5. Example FreeNeRF’s novel view synthesis results with 3 input views on the DTU dataset.

transform/plot_ssim.html

Fern

Leaves

Fortress

Room

Orchids

Flower

Horns

Trex

(a) (b) (c) (a) (b) (c)

Figure A.6. Example FreeNeRF’s novel view synthesis results with 3 input views on the LLFF dataset.

Ground Truth mip-NeRF

PSNR �
Ground Truth mip-NeRF Ours

PSNR=28.34 PSNR=28.55 Normals MAE=36.91 Normals MAE=30.54

Normals MAE=37.06 Normals MAE=30.59PSNR=33.61 PSNR=34.13

Normals MAE=34.24 Normals MAE=27.83PSNR=28.65 PSNR=29.60

Ours

Normals Mean Angular Error (MAE) �

Figure A.7. Comparison on normal vectors estimation. Beyond the few-shot neural rendering problem, we train a mipNeRF and
a FreeNeRF on the “coffee” scene in the Shiny Blender dataset [32] to demonstrate FreeNeRF’s potential in estimating more accurate
normal vectors. The PSNR scores for this scene are 30.839 and 31.364 for mipNeRF and FreeNeRF, respectively. The mean angular errors
(the lower, the better) are 36.549 and 31.492 for mipNeRF and FreeNeRF, respectively. Note that we use a much smaller batch size (4096)
than that in the original setting (16394), so the numerical results here are not comparable to those in RefNeRF [32].

pute the structural similarity index measure (SSIM) score
and the interface provided by an open source repository4

(using a learned VGG model) to compute the learned per-
ceptual image patch similarity (LPIPS) score.

B.2. Implementations.

DietNeRF’s codebase. In this codebase5, a plain NeRF
[21] that consists of two MLPs (one coarse MLP and one
fine MLP) is used as the baseline. All NeRF models are
trained with the Adam optimizer for 200k iterations. The
learning rate starts at 5 ⇥ 10�4 and decays exponentially
with a rate of 0.1. We refer readers to the codebase for more
details. In this codebase, the maximum input frequency L
(Eq. (1)) used in the position encoding for coordinates is 9.
The original coordinates are concatenated with positional
encodings by default.
RegNeRF’s codebase. In this codebase6, a plain mipN-
eRF [2] is used as the baseline. The maximum input fre-
quency of coordinates is 16, which is larger than that of
the original NeRF [21]. We further concatenate the orig-
inal coordinates into the positional encodings. All NeRF
models are trained with the Adam optimizer with an expo-
nential learning rate decaying from 2 · 10�3 to 2 · 10�5 and
512 warm-up steps with a multiplier of 0.01 [2]. Follow-
ing [22], we clip gradients by value at 0.1 and then by norm
at 0.1 for all experiments. All NeRF models in the main
experiments are optimized for 500 epochs with a batch size
of 4096. This setting results in around 44k, 88k and 132k
training iterations on the DTU dataset for 3/6/9 input views,
respectively, and 70k, 140k and 210k training iterations for
those on the LLFF dataset, respectively. Note that in the ab-
lation study we use a batch size of 1024 instead of 4096 for
faster training.
Occlusion regularization. We use a weight of 0.01 for
Locc in all experiments. For simplicity, we compute this
loss on the secondary stage’s outputs, i.e. those from the fine
MLP in NeRF [21] and the second query in mipNeRF [2].

4https://github.com/richzhang/PerceptualSimilarity
5https://github.com/ajayjain/DietNeRF
6https://github.com/google-research/google-research/

tree/master/regnerf

