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S0 Split S1 Split

S3DIS [1]

0:ceiling, 1:floor, 2:wall,
3:beam, 4:column, 5:window,

6:door, 7:table, 8:chair,
9:sofa, 10:bookcase, 11:board, 12:clutter

0:beam, 1:board, 2:bookcase,
3:ceiling, 4:chair, 5:clutter,
6:column, 7:door, 8:floor,

9:sofa, 10:table, 11:wall, 12:window

ScanNet [2]

0:wall, 1:floor, 2:chair, 3:table, 4:desk,
5:bed, 6:bookshelf, 7:sofa, 8:sink,

9:bathtub, 10:toilet, 11:curtain, 12:counter,
13:door, 14:window, 15:shower curtain, 16:refrigerator,

17:picture, 18:cabinet, 19:other furniture

0:bathtub, 1:bed, 2:bookshelf, 3:cabinet,
4:chair, 5:counter, 6:curtain, 7:desk,

8:door, 9:floor, 10:other furniture, 11:picture,
12:refrigerator, 13:shower curtain, 14:sink, 15:sofa,

16:table, 17:toilet, 18:wall, 19:window

Table 1. Two split paradigms S0 and S1 on S3DIS and ScanNet datasets for 3D point cloud class-incremental semantic segmentation. The
number before class names (e.g. 0, 1, 2, ...) represents the label. S0 is organized by the original class label order of datasets. S1 introduces
classes in alphabetical order. We change the number of novel classes to evaluate our approach. For example, when training model on
Cnovel=5 under S3DIS S0 split, 0:ceiling to 7:table are used as base classes, while 8:chair to 12:clutter are applied as novel classes.

In the supplementary material, we will first show the split
of different paradigms S0 and S1 on S3DIS and ScanNet
datasets in Appendix A, and then we show some extra ab-
lation studies in Appendix B. Finally, we will provide the
class-wise IoU results of the Cnovel=5 case in Appendix C
for detailed comparison.

Appendix A. Dataset Split
Tab. 1 shows the dataset split paradigms on S3DIS [1]

and ScanNet [2] dataset in our experiments. S0 split is orga-
nized according to the specified order in the original dataset,
while S1 split is arranged according to the alphabet order.

Appendix B. Extra Ablation Studies
Results with various backbones. Tab. 2 shows the exper-
imental results of our method across different point cloud
backbones (PointNet++ [5], PointConv [7] and DGCNN
[6]). From the table, we can see that our approach has a
consistent and superior performance close to the joint train-
ing (upper bound).
Table 2. Experiments with various backbones on S3DIS dataset.

Backbone Methods Cnovel=3 / S0
0-9 10-12 all

PointNet++ [5] Ours 48.93 42.64 47.48
Joint Training 51.06 44.91 49.64

PointConv [7] Ours 49.67 45.53 48.72
Joint Training 49.82 48.65 49.55

DGCNN [6] Ours 45.15 45.33 45.19
Joint Training 48.62 41.44 46.97

K-nearest Neighbors Relation

Figure 1. Effects of different K-nearest Neighbors in GFT module
on S3DIS datasets (S0) of Cnovel=3.

Number of nearest neighbors in GFT module. To explore
the effects of different K-nearest neighbors in Geometry-
aware Feature-relation Transfer (GFT) module, we perform
a series of experiments in Fig. 1. As we can see, increasing
the number of K improves overall mIoU. However, when
K reaches a certain number (i.e., K=12), it starts an ad-
verse impact on the performance. We believe that when eu-
clidean distance is applied for neighbor points sampling on
the point cloud with a certain density, larger K will destroy
the object geometric structure and thus cause the structured
feature relation bias. Besides, increasing K brings more
constraints on the old classes, which may interfere with the
model’s capability to learn novel classes.



Table 3. Class-wise IoU (%) performance comparison of 3D class-incremental segmentation methods on the S3DIS [1] dataset under
S0 split. “BT”, “F&A”, “FT”, “JT” denotes Base Training, Freeze and Add, Fine-Tuning and Joint Training respectively. Asterisk (*)
denotes traditional class-incremental methods EWC [3] and LwF [4] in our reproduction for 3D semantic segmentation. For the forgetting-
prevention-based method (gray face), the best IoU results for individual class are underlined, and the best mIoU results are in bold.

S3DIS dataset (S0), Cnovel=5
base classes novel classes mIoU (%)
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0-7 8-12 all

BT 88.74 96.58 73.30 0.00 6.76 40.60 17.61 64.70 - - - - - 48.54 - -
F&A 84.11 95.09 65.87 0.00 7.51 40.60 17.26 43.57 18.29 1.90 24.75 4.72 12.01 44.25 12.33 31.98
FT 80.04 89.11 65.13 0.31 3.07 6.29 0.00 35.75 33.83 3.09 43.27 36.56 34.48 34.96 30.25 33.15
EWC* 67.03 84.43 58.38 0.04 10.25 23.14 26.92 44.87 49.68 7.05 42.72 35.87 20.04 39.38 31.07 36.19
LwF* 90.02 96.45 73.70 0.00 3.55 37.61 9.24 45.85 60.01 7.50 43.20 27.82 36.53 44.55 35.01 40.88
Ours 88.10 96.08 73.91 0.04 8.83 41.97 17.20 65.37 55.35 21.05 44.14 41.21 36.05 48.94 39.56 45.33

JT 91.11 96.36 73.52 1.02 10.32 41.67 23.00 64.87 59.26 25.11 44.58 39.34 40.41 50.23 41.74 46.97

Table 4. Class-wise IoU (%) performance comparison of 3D class-incremental segmentation methods on the S3DIS [1] dataset under
S1 split. “BT”, “F&A”, “FT”, “JT” denotes Base Training, Freeze and Add, Fine-Tuning and Joint Training respectively. Asterisk (*)
denotes traditional class-incremental methods EWC [3] and LwF [4] in our reproduction for 3D semantic segmentation. For the forgetting-
prevention-based method (gray face), the best IoU results for individual class are underlined, and the best mIoU results are in bold.

S3DIS dataset (S1), Cnovel=5
base classes novel classes mIoU (%)
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0-7 8-12 all

BT 1.98 30.35 42.37 90.71 60.78 36.38 3.28 32.10 - - - - - 37.24 - -
F&A 1.28 35.40 41.19 90.12 45.60 32.43 9.95 42.25 93.75 0.16 14.53 70.85 35.16 37.71 42.89 39.44
FT 0.00 0.36 7.33 55.46 5.98 9.14 0.66 12.61 91.15 10.91 47.02 67.18 37.08 10.99 50.67 26.53
EWC* 0.00 29.97 5.55 85.18 35.37 24.74 1.89 2.80 95.54 6.06 62.43 68.39 41.77 23.19 54.84 35.36
LwF* 0.00 28.42 33.61 90.29 58.78 32.34 5.55 13.66 96.04 6.18 62.72 73.29 37.71 32.83 55.19 41.43
Ours 0.08 32.07 50.16 89.92 62.98 39.19 3.20 27.86 95.43 6.14 63.32 73.80 37.32 38.17 55.20 44.72

JT 0.97 29.47 45.24 89.64 61.02 37.71 11.83 31.16 96.67 22.57 64.72 74.06 42.55 38.38 60.11 46.74

Table 5. Class-wise IoU (%) performance comparison of 3D class-incremental segmentation methods on the ScanNet [2] dataset under
S0 split. “BT”, “F&A”, “FT”, “JT” denotes Base Training, Freeze and Add, Fine-Tuning and Joint Training respectively. Asterisk (*)
denotes traditional class-incremental methods EWC [3] and LwF [4] in our reproduction for 3D semantic segmentation. For the forgetting-
prevention-based method (gray face), the best IoU results for individual class are underlined, and the best mIoU results are in bold.

ScanNet dataset (S0), Cnovel=5
base classes novel classes mIoU (%)
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0-14 15-19 all

BT 55.77 91.58 52.90 42.60 27.15 32.58 30.17 33.76 21.88 39.79 35.57 19.05 26.23 25.53 31.42 - - - - - 37.73 - -
F&A 53.27 90.89 51.88 40.77 25.76 29.35 28.70 32.74 21.50 39.05 34.68 17.77 18.31 25.81 30.35 0.28 0.00 0.09 4.33 4.15 36.06 1.77 27.48
FT 24.16 25.98 7.35 4.61 8.75 4.35 5.90 9.32 5.05 0.98 14.01 1.12 5.08 13.28 10.88 14.33 17.35 8.17 17.66 10.73 9.39 13.65 10.45
EWC* 42.75 85.48 29.32 9.69 1.55 14.24 14.78 6.78 7.85 4.72 12.34 2.28 9.09 19.16 6.29 16.17 11.13 10.36 15.81 12.61 17.75 13.22 16.62
LwF* 47.95 91.88 38.66 35.41 16.96 32.24 33.14 23.84 19.16 27.64 27.48 10.14 23.06 18.22 9.95 11.37 11.10 10.77 19.50 14.10 30.38 13.37 26.13
Ours 51.59 91.14 45.32 39.15 24.57 29.99 26.21 26.02 19.22 39.89 33.50 11.22 22.27 22.95 29.30 14.44 11.70 11.09 15.27 14.67 34.16 13.43 28.98

JT 53.96 92.17 52.18 42.82 27.12 35.84 35.87 33.75 23.83 36.98 35.63 17.50 26.11 25.73 32.48 19.54 11.30 10.08 24.15 18.08 38.13 16.63 32.76

Table 6. Class-wise IoU (%) performance comparison of 3D class-incremental segmentation methods on the ScanNet [2] dataset under
S1 split. “BT”, “F&A”, “FT”, “JT” denotes Base Training, Freeze and Add, Fine-Tuning and Joint Training respectively. Asterisk (*)
denotes traditional class-incremental methods EWC [3] and LwF [4] in our reproduction for 3D semantic segmentation. For the forgetting-
prevention-based method (gray face), the best IoU results for individual class are underlined, and the best mIoU results are in bold.

ScanNet dataset (S1), Cnovel=5
base classes novel classes mIoU (%)
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0-14 15-19 all

BT 35.72 33.32 31.89 20.07 51.95 25.67 17.32 24.74 23.72 91.95 20.06 9.91 12.66 16.60 23.97 - - - - - 29.30 - -
F&A 30.25 27.52 27.04 17.12 45.92 20.25 12.17 18.29 20.57 89.11 16.73 6.93 11.57 11.75 23.59 11.73 15.51 14.79 33.83 17.76 25.25 18.72 23.62
FT 1.63 0.03 0.11 2.71 17.61 2.04 0.00 0.39 1.12 49.78 2.87 0.19 0.07 0.00 8.84 28.61 23.91 35.83 52.14 29.65 5.83 34.03 12.88
EWC* 16.33 10.96 11.57 9.24 29.43 4.70 1.75 8.04 18.39 76.79 8.42 4.85 2.23 8.16 13.08 28.23 24.90 30.49 52.86 30.01 14.93 33.30 19.52
LwF* 26.61 31.54 25.48 16.28 49.99 18.25 12.55 21.60 17.15 88.75 15.65 7.93 9.98 17.56 1.27 28.53 35.05 36.88 58.17 30.76 24.04 37.88 27.50
Ours 42.90 25.64 26.21 20.52 45.01 25.45 3.82 16.91 20.33 88.99 17.38 7.02 10.84 15.40 24.15 28.96 30.09 35.18 54.83 28.50 26.04 35.51 28.41

JT 42.49 32.19 35.28 23.62 53.32 24.46 19.34 27.59 26.87 92.14 18.65 10.98 15.47 17.52 22.25 31.61 44.21 33.22 54.15 30.76 30.81 38.79 32.81



Appendix C. Class-wise IoU Performance

Tab. 3 ∼ Tab. 6 details the class-wise IoU performance
of our method compared with baselines on various datasets
split under Cnovel=5. We implement the joint training as
the upper bound by training on both the base and novel
classes at once. We notice that the results of our method are
significantly better than other approaches on base classes.
In particular, for Tab. 3 and Tab. 4, our novel model per-
forms even better on 0-7 (base) classes than training only
on base classes (base model). We believe it is due to
that our Uncertainty-aware Pseudo-label Generation (UPG)
strategy generates more accurate labels of base classes for
the new data by eliminating the prediction uncertainties.
These pseudo labels will provide better guidance for the
novel model training. Moreover, the IoU result of novel
class “sofa” in Tab. 3 obtain superior performance than it in
Tab. 4. This may be due to the confusion between the novel
class “sofa” and the similar base class “chair” in the incre-
mental process of S1 split, which also shows that different
order will have a impact on the results. Moreover, under the
experiment of S1 on ScanNet dataset, our method performs
slightly lower than LwF [4] on the novel 15-19 classes. We
argue that the novel class samples under S1 split are more
common and numerous (e.g. “wall” and “window”), which
is more likely to cause forgetting of base classes. In this
case, our model focuses more (introduces more constraints)
on maintaining base classes performance.
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