
A. Pruning and training details
A.1. Training hyperparameters

In our experiments, we use the same data preprocess-
ing, data augmentation, optimizer setup, and learning rate
scheduling scheme as mentioned in Table 9 of the DeiT
paper [35], unless otherwise mentioned in the following
sections.

A.1.1 Pruning and finetuning

For pruning and finetuning we use the training objective
L = αLfull + LCNN to update the model. We set the balanc-
ing factor α = 1 ·105 and full model distillation temperature
τ = 20. For our results reported in Tab. 3 without CNN
distillation, we set τ = 3 for the full model distillation ob-
jective. The pruning process is performed starting from the
pretrained DeiT-Base model, with a fixed learning rate of
0.0002× batchsize

512 . We perform the pruning experiments on
the cluster of four NVIDIA V100 32G GPUs, with a batch
size of 128 on each GPU. We prune the model continuously
until a targeted latency is reached, which is discussed in de-
tail in Appendix A.2. Followed by the iterative pruning we
remove the pruned away dimensions of the pruned model to
turn it into a small and dense model, and continue to finetune
the small model to further recover accuracy. Entire finetun-
ing is performed for 300 epochs with an initial learning rate
of 0.0002× batchsize

512 , cosine learning rate scheduling and
no learning rate warm up. The finetuning is performed on a
cluster of 32 NVIDIA V100 32G GPUs, with a batch size of
144 on each GPU.

A.1.2 Downstream tasks transfer learning

Table 8. Datasets used for downstream task experiments.

Dataset Train size Test size # Classes

CIFAR-10 [21] 50,000 10,000 10
CIFAR-100 [21] 50,000 10,000 100

iNaturalist 2018 [37] 437,513 24,426 8,142
iNaturalist 2019 [37] 265,240 3,003 1,010

The details of the classification datasets used for our
downstream task transfer learning experiments are provided
in Tab. 8. Similar to the experiment setting of DeiT [35], for
downstream task experiments we rescale all the images to
224× 224 to ensure we have the same augmentation as the
ImageNet training. All models are trained for 300 epochs
with a initial learning rate of 0.0005 × batchsize

512 , cosine
learning rate scheduling and 5 epochs of learning rate warm
up. We use batch size 512 for CIFAR-10 and CIFAR-100
models, and batch size 1024 for iNaturalist models.

For Semantic Segmentation, previous work SETR [50]
provides an effective downstream model architecture and
training pipeline to use ViT models as the backbone model
of semantic segmentation tasks 2. In our experiments we
substitute the backbone model with the DeiT/NViT models
pretrained on ImageNet. We keep all other downstream archi-
tectures and training configurations unchanged. We evaluate
the models on the Cityscape dataset [8] and the ADE20K
dataset [51]. For the Cityscape dataset, we follow the
“SETR_Naive_DeiT_768x768_40k_cityscapes_bs_8” con-
figuration and train on 4 GPUs. For the ADE20K dataset,
we follow the “SETR_PUP_DeiT_512x512_160k_ade20k
_bs_16” configuration and train on 2 GPUs.

A.1.3 ReViT experiments

For the experiments on ReViT models we use the CNN hard
distillation objective as in Eq. (8) as the training objective
for all the models. We train Each pair of comparable DeiT
and ReViT models with the same set of hyperparameters.
In all experiments, we train the model from scratch for 300
epochs with an initial learning rate of 0.0005 × batchsize

512 ,
cosine learning rate scheduling and 5 epochs of learning rate
warm up. The models are trained on a cluster of 16 V100
32G GPUs, with a batch size of 48 on each GPU for base
models and a batch size of 144 on each GPU for small and
tiny models.

A.2. Pruning configuration

We use DeiT-Base model with CNN distilla-
tion as the starting point of our pruning process,
whose pretrained model is available at https :
/ / dl . fbaipublicfiles . com / deit / deit _
base_distilled_patch16_224-df68dfff.pth.
We prune the model in an iterative manner: We compute
the moving average of the latency-aware importance score
IL
S for all unpruned dimension groups in each training

step of the pruned model. Every 100 steps, we remove a
group of dimensions that has the minimum total importance.
Removed dimensions will never be reactivated. We prune
EMB and MLP in a group size of 16, QK and V in a group
size of 8, and H in a group size of 2, so that the input and
output dimensions of all the linear projection operations
in the model can be divided by 16, thus satisfying the
dimension requirement of the Ampere GPU.

The pruning process will terminate once the estimated
latency of the model reaches a targeted speedup ratio over
that of the DeiT-base model. The pruned model will then
be converted into a small dense model and finetuned to
further restore the accuracy. The pseudo code of our pruning
algorithm is provided in Algorithm 1

2Code publicly available at https://github.com/fudan-zvg/
SETR.

https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth
https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth
https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth
https://github.com/fudan-zvg/SETR
https://github.com/fudan-zvg/SETR


Table 9. Pruning configurations and remained dimensions for models reported in Table 1. The reported dimensions are averaged across all
the blocks.

Avg. dim remained

Model Target speedup Pruning steps EMB H QK V MLP

DeiT-B N/A 0 768 12 64 64 3072

NViT-B 1.85× 480 496 8.00 35.33 58.67 1917.3
NViT-H 2.00× 524 480 7.33 32.67 56.67 1816.0
NViT-S 2.56× 642 400 5.83 24.00 47.33 1557.3
NViT-T 5.26× 908 224 3.17 14.67 34.00 930.67

Algorithm 1 Hessian-based latency-aware pruning.
1: # Initialization and preparation
2: Load pretrained DeiT-B model
3: Profile latency lookup table as in Appedix A.3
4: # Iterative pruning
5: while Estimated latency > target do
6: for (X,Y ) in Train_Loader do
7: for All prunable structural group S do
8: Compute IS with (X,Y ) following Equation (6)
9: Estimate latency improvement for pruning S

10: Compute IL
S following Equation (7)

11: Remove the structural group with minS IL
S

12: Estimate pruned model latency
13: Gradient descent on remaining weights
14: # Finetuning
15: Finetune pruned model

Tab. 9 reports the target speedup ratio we use to achieve
NViT-B, NViT-H, NViT-S and NViT-T architectures reported
in Tab. 1. The resulted number of pruning steps and the
averaged dimension of EMB, H, QK, V and MLP among all
the transformer blocks are also provided.

A.3. Latency lookup table profiling detail

We use a latency lookup table to efficiently evaluate the
latency of the pruned model given all its EMB, H, QK, V and
MLP dimensions. We initialize the lookup table by profiling
the latency of a single vision transformer block on a V100
GPU with batch size 576. We evaluate the latency through a
grid of:

• EMB: 0, 256, 512, 768 (latency assigned as 0 at zero
EMB);

• H: 1, 3, 6, 9, 12;

• QK: 1, 16, 32, 48, 64;

• V: 1, 16, 32, 48, 64;

• MLP: 1, and 128 to 3072 with interval 128;

resulting into 9375 configurations in total. We run each con-
figuration for 100 times and record the median latency value

in the lookup table. For a block with arbitrary dimensions, its
latency is estimated via a linear interpolation of the lookup
table, which we implement with the RegularGridInterpola-
tor function from SciPy [39, 42]. The estimated latency of
the entire model is computed as the sum of the estimated
latency of all the blocks, while omitting the latency of the
first projection layer and the final classification FC layer.

Figure 5. Estimated latency from the lookup table vs. evalu-
ated latency on V100 GPU with batch size 256. Reduction
ratio computed with respect to the latency of the full model.

To show the usefulness of the lookup table, we compare
the estimated and evaluated latency of different model archi-
tectures in Fig. 5. Each point represent the model achieved
from a pruning step towards NViT-T configuration (See Ap-
pendix A.2). The estimated latency and evaluated latency
of ViT demonstrate strong linear relationship throughout
the pruning process, with R2 = 0.99864. This enables us
to accurately estimate the latency improvement brought by
removing each group of dimensions, and to use the estimated
speedup of the pruned model as the stopping criteria of the
pruning process.



B. Additional ablation studies
B.1. Training objective

As discussed in Sec. 3.3, we propose to use a combina-
tion of full model distillation and CNN hard distillation as
the final objective of our pruning and finetuning process.
Here we ablate the validity of this choice and compare the
finetuning performance achieved with removing one or both
distillation loss from the objective. Specifically, we consider
the following 4 objectives:

• Proposed objective: L = αLfull + LCNN;

• CNN distillation only: LCNN as in Eq. (8);

• Full model distillation with cross-entropy: Lfull +

LCE
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We use each of the 4 objectives to finetune the pruned
model achieved with NViT-T configuration, and report the
final Top-1 accuracy in Tab. 10. The finetuning is performed
for 50 epochs, with all other hyperparameters set the same
as described in Appendix A.1.1. The proposed objective
achieves the best accuracy.

Table 10. NVP-T model finetuning accuracy with different objec-
tives.

Objective Proposed CNN Full model CE only

Top-1 Acc. 73.55 73.40 72.62 72.36

B.2. Pruning individual components

In this section we show the result of pruning EMB, MLP,
QK and V component individually. The pruning procedure
and objective are almost the same as described in Sec. 3.2,
other than here we only enable the importance computation
and neuron removal on a single component. The pruning
interval of EMB, MLP, QK and V are set to 1000, 50, 200
and 200 respectively, in order to allow the model to be up-
dated for similar amount of steps when pruning different
components to the same percentage. 32 neurons are pruned
for each pruning step. We stop the pruning process and fine-
tune the model for 50 epochs after the targeted pruned away
percentage is reached.

The compression rate and accuracy achieved by pruning
each component are discussed in Tab. 11. Under similar
pruned away ratio, we can observe that pruning EMB leads
to the most significant compression on the parameter and
FLOPs count, as well as the largest drop in accuracy. This
implies that the embedding dimension leads to the most

effective exploration on the compression-accuracy tradeoff,
which motivates us to use EMB as the key driving factor in
analyzing the parameter redistribution in Sec. 5.1.

Table 11. Iterative pruning single component to targeted percentage.

Component Pruned away Para (×) FLOPs (×) Top-1 Accuracy

Base 0% 1 1

EMB 50% 1.98 1.92 79.24
MLP 50% 1.49 1.47 82.13
QK 50% 1.09 1.10 82.98
V 50% 1.09 1.10 82.63

EMB 70% 2.95 2.77 73.15
MLP 75% 1.97 1.91 80.29
QK 75% 1.14 1.16 82.64
V 75% 1.14 1.16 81.51

B.3. Effectiveness of head alignment

We also illustrate the benefit of head alignment, where
we explicitly single out the head dimension and align the
dimensions of each head in structure pruning. We show the
tradeoff curve between latency reduction and the accuracy
achieved with or without explicit head alignment in Fig. 6.
For models pruned without head alignment, we estimate
their latency as if all heads are padded with zeros to have
the same QK and V dimensions during inference. Under the
same latency target, the accuracy achieved with our proposed
head-aligned pruning scheme consistently outperforms that
of without head alignment, with up to 0.3% accuracy gain.

Figure 6. Comparing the parameter reduction-accuracy trade-
off and latency reduction-accuracy tradeoff of different prun-
ing schemes. Latency estimated on RTX 2080 GPU. Model
size compression rate and latency reduction rate are com-
puted based on that of the DeiT-Base model respectively.

B.4. Effectiveness of Hessian importance score

In our pruning method we claim that utilizing a Hessian-
based importance score is the key factor to allow global
structural pruning in the ViT models. Here we perform per-
form an ablation study on pruning with the magnitude-based
criteria, where the group with the smallest L2 norm will be
pruned in each step. We prune the model to match the la-
tency of DeiT-S, and compare with our NViT-S performance.



All the other hyperparameters are set the same. Results are
shown in Tab. 12. It can be seen that magnitude-based prun-

Table 12. Comparing magnitude-based pruning vs proposed NVP.
The pruned model accuracy before finetuning is reported.

Method Pruning steps Para (×) FLOPs (×) Top-1 Accuracy

Magnitude 968 4.14 4.26 33.79
NViT-S 642 4.18 4.24 76.59

ing struggles to reach the latency target with a larger number
of steps, while the pruned model accuracy is much worse.
Looking at the remained dimension of the magnitude-based
pruning unveils that most of the structural components are
either unpruned or all pruned away, which infers magnitude-
based criteria is incomparable across different structural
components and different layers, thus unsuitable for global
pruning.

B.5. Correlation between Hessian importance score
and real loss difference

Figure 7. Hessian importance score vs. squared loss differ-
ence.

In this section we verify the theoretical result derived
in Sec. 3.2.1, on estimating the loss difference induced by
pruning with the proposed Hessian importance score. We
evaluate the squared model loss increase for performing a
single structural pruning step on different structural compo-
nents of the DeiT-B model, and plot it with the corresponding
importance score computed for the pruned structure follow-
ing the derivation in Eq. (6). All the loss differences and
Hessian importance score are estimated on the same batch of
64 training images. As shown in Fig. 7, we observe strong
positive correlation between the estimated sensitivity and the
real loss difference.

B.6. Effectiveness of latency-aware regularization

In Tab. 13 we show the result of pruning without latency
regularization, i.e. set η = 0 in the importance score for-
mulated in Eq. (7), and compare with our NViT results.
Both models are pruned to match DeiT-S latency. We can
see from the result that pruning with latency-aware regular-
ization can help reaching the target latency quicker, while

achieving higher accuracy under the latency budget. To bet-
ter understand the difference in the achieved architecture, we
also show the average dimension across all the blocks after
pruning. It can be seen that model pruned with latency regu-
larization tends to have more dimensions on MLP and less
on MSA (QK and V), which is in line with our observation
made in Sec. 5.1 on designing more efficient ViT architec-
ture, where reducing dimensions related to the attention (H,
QK, V) while increasing MLP dimension may lead to more
accurate model under similar latency.

B.7. Performance on low-end GPUs

As one of the main motivation for pruning is to enable
model deployment on low-end devices with cheaper cost and
lower energy consumption. To this end we further examine
the latency of running the pruned NViT models on NVIDIA
Jetson NANO, a commonly used low-end GPU for embed-
ded system. Here we utilize a batch size of 64 for ImageNet
inference.

For base model, we note that DeiT-B cannot fit into the
memory of the device, preventing it from being compiled
onto the NANO device. Whereas our pruned NViT-B model
can run with a decent speed, reaching 83.3% Top-1 acc.
NViT-T matches the speed of DeiT-T, and the speedup over
NViT-B is consistent to our measurement on V100 reported
in Tab. 1 (2.8× on NANO vs. 2.7× on V100). This further
demonstrates that for low-end devices NViT enables the
originally prohibitive high-performance model to run, while
the speedup achieved on high-end devices can be retained.

C. Additional parameter redistribution analysis
C.1. Attention head diversity

As we observe in Fig. 4 and mentioned in Sec. 5.1, the
pruned models tend to preserve more dimensions in the trans-
former blocks towards the middle layers, while having less
dimensions towards the two ends of the model. Here We
explore an intuitive analysis on why this trend occurs by ob-
serving the diversity of features captured in each transformer
blocks. Given the attention computation serves important
functionality in ViT models, here we use the diversity of the
attention score learned by each head as an example. Specifi-
cally, we take a random batch of 100 ImageNet validation set
images, pass them through the pretrained DeiT-Base model
and our NViT-B model, and record the averaged attention
score softmax

(
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)
of all the images computed in each

head h. We then compute the pair-wise cosine distance of
the attention score from each head as a measure of diversity,
and visualize the results in Fig. 8.

In DeiT-B model, we can observe that in earlier blocks
like block 2 and later blocks like block 11, there are clear
patches of darker blue indicating a group of heads having
attention scores similar to each other. While for blocks in the



Table 13. Comparing pruning results with (η =5e-4) or without (η = 0) latency-aware regularization. The pruned model accuracy before
finetuning is reported. The reported dimensions are averaged across all the blocks.

Avg. dim remained

η Pruning steps Para (×) FLOPs (×) Acc. EMB H QK V MLP

0. 657 4.11 4.17 74.80 416 5.7 25.3 49.3 1510.7
5e-4 (NViT-S) 642 4.18 4.24 76.59 400 5.8 24.0 47.3 1557.3

Figure 8. Pair-wise cosine distance between all heads’ attention score in each transformer block. Blue indicates a smaller
distance while yellow indicates a larger one. The dark blue blocks in NViT-B figures corresponds to the heads being pruned
away, which have all-zero attention scores thus zero cosine distance in between.

middle such as block 5-8, almost all pairs of heads appear to
be fairly diverse. Such difference in diversity leads to differ-
ent behavior in the pruning process, where less heads are pre-
served in earlier and later blocks while more are preserved in
the middle. Note that all remaining heads in NViT-B model
appears to be diverse with each other, showing a more ef-
ficient utilization of the model capacity. Interestingly, this
less-more-less trend of dimensional change across different
transformer is not observed in previous works compress-
ing BERT model for NLP tasks [25, 26, 40]. The learning
dynamic of ViT model leading to this trend is worth investi-
gating in the future work.

C.2. Parameter redistribution on SWIN

We have shown the effectiveness of the proposed prun-
ing method on pruning SWIN-Transformer stages. In this
section, we examine the effectiveness of the discovered pa-
rameter redistribution rule of DeiT on the Swin-Transformer
model. Though SWIN follows a multi-stage design that is
different from DeiT, within each stage all the transformer
blocks have the same dimension, which gives us the poten-
tial of exploring better dimension redistribution rules. Here
we take SWIN-T model, with 2-2-6-2 transformer blocks in

stage 0-3 respectively. As the redistribution rule treats the
first/last block and intermediate blocks differently, the rule
mainly takes effect on stage 2 with 6 blocks. The parameter
redistribution is performed following exactly the same Re-
ViT rule as reported in Tab. 6. Specifically, the dimensions of
each transformer block in the redistributed SWIN-ReViT-T
is reported in Tab. 14.

Table 14. Redistributed SWIN-ReViT-T model Stage-2 dimensions.

Block 1 2 3 4 5 6

EMB 384 384 384 384 384 384
Head 10 4 8 8 4 10

QK/Head 32 16 32 32 16 32
V/Head 64 64 64 64 64 64

MLP 1152 1152 2304 2304 1152 1152

We train the SWIN-ReViT-T model on ImageNet fol-
lowing the same training scheme described in the official
GitHub repo 3. The model statistics and training perfor-
mance of the resulted SWIN-ReViT-T is compared with the
original SWIN-T in Tab. 15.

3https://github.com/microsoft/Swin-Transformer

https://github.com/microsoft/Swin-Transformer


Table 15. Comparing the efficiency and accuracy of SWIN-ReViT-
T vs. SWIN-T on ImageNet. The throughput is evaluated with a
single TITAN RTX GPU.

Model Parameters FLOPs Throughput Top-1 Accuracy

SWIN-T 29M 4.5G 546.37 img/s 81.3%
SWIN-ReViT-T 28M 4.4G 574.25 img/s 81.3%

The redistributed SWIN-ReViT-T model achieves the
same Top-1 accuracy as the original model with 1.1x
speedup. This indicates that the redistribution rule derived
on DeiT can also be transferred to other ViT variants to
achieve efficiency improvements.

C.3. The significance of ReViT-S performance gain

Table 16. Repeated experiments of ReViT-S and DeiT-S training.

Model Ckpt 1 Ckpt 2 Ckpt 3 Ckpt 4 Ckpt 5 Mean STD

DeiT-S 80.96 80.93 80.95 81.01 80.92 80.954 0.035
ReViT-S 81.17 81.19 81.17 81.20 81.22 81.190 0.021

As we report the accuracy improvement brought by
ReViT-S over DeiT-S in Tab. 7, here we verify the signifi-
cance of this improvement via repeated experiments. Specif-
ically, we report the Top-1 accuracy of 5 checkpoints for
training ReViT-S and DeiT-S from scratch on ImageNet
in Tab. 16. Note that the averaged 0.23% Top-1 accuracy
gain of ReViT-S over DeiT-S is 10 times the standard deriva-
tion of repeated experiment results, showing the improve-
ment is truly significant.


