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S1. Related Work Continued

Background of Optimal Transport Due to the ability to
jointly exploit the feature and geometric structure informa-
tion of the implicit data distribution [16], Optimal Trans-
port (OT) has been extensively employed across various
domains, including object detection [10], image genera-
tion [28], domain adaptation [40], cellular dynamics [36],
and cancer detection [42]. The optimal transport problem
can be broadly classified into two categories, the Monge
problem [3] and the Kantorovich problem [!5], depending
on whether the mass of each transport unit can be divided.
Unlike the Monge problem, the Kantorovich problem per-
mits the mass of a given transport unit in one distribution
to be distributed and allocated to multiple target units in an-
other distribution. Hence, the Kantorovich problem is more
suitable for discrete measures with different transport units.
In this study, our method is categorized as the Kantorovich
problem due to the discrete nature of the network architec-
ture, where each network may consist of a varying number
of layers.

In our approach, we specifically address the Kantorovich
problem, which involves two discrete measures, denoted by
a =Y Uiy and B = Z;":l v;0y,. Here u; and v;
denote the mass associated with points x; and y;, respec-
tively. It is important to note that the total mass of each dis-
crete measure is constrained to one, such that Z;’: LU =1,
Z;"zl v; = 1,and u; > 0, v; > 0. Let ¢;; = c(z;,y;) de-
note the transportation cost of dispatching unit mass from
point z; to another point y;, and T;j—r(s,.y;) indicate the
quantity of mass transported from point ; to point ;. The
goal of the Kantorovich problem is to determine the optimal
transport plan between the discrete measures « and /3 while
minimizing the total transport cost:
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As the above formulation features a linear objective and
linear constraints, the Kantorovich problem can be clas-
sified as a linear programming problem. Therefore, off-
the-shelf linear programming algorithms can be employed
to solve it. The computational complexity of the conven-
tional linear programming algorithm [37] is O (d®Ind),
where d = max(n, m). Recently, Cuturi [6] proposed the
Sinkhorn algorithm. , which adds an entropic regulariza-
tion penalty to the transport plan of the original problem,
resulting in an approximation of the solution of the Kan-
torovich problem. This method can significantly acceler-
ate the optimization process and reduce its computational
complexity to O(d?/e?), where ¢ is a desired tolerance.
Here we choose the Sinkhorn algorithm to optimize our
proposed HOTNN metric. Suppose two networks each con-
tain M cells and n nodes, the complexity of cell-level met-
ric is O(n2/<2), while that of the network-level metric is
5(]\1 2/¢2). By leveraging the hierarchy of the networks,
the complexity of the HOTNN metric can be further re-
duced from O(M?n?/e?) to O(M?/e% + Mn?/<?). For
a more in-depth understanding of optimal transport, inter-
ested readers can refer to Peyre ef al. [26].

Hierarchical Optimal Transport. Optimal transport
(OT) [1,23,29,31] has recently received widespread atten-
tion as it provides a good measure of the differences be-
tween different distributions by seeking the optimal match-
ing from one distribution to another with the minimum
transportation cost. An attractive property of OT is that it
can incorporate the structure information of the data dis-
tribution into the transportation cost function. However,
there may exist additional structures in data like the hier-
archical structures of some objects [21]. Hierarchical opti-
mal transport [20, 30, 34,43] is a generalization of OT that
leverages the hierarchical structure of data to rule out un-
necessary assignments, which can efficiently improve as-
signments and accelerate the computation. The hierarchical
optimal transport can be viewed as a nested optimal trans-



port problem, where the ground metric itself is an optimal
transport problem. Lee et al. [20] explore the hierarchical
optimal transport to improve alignment for multimodal dis-
tribution by leveraging the clustered hierarchical structure
in data. Similarly, Mourad et al. [7] proposed a hierarchical
optimal transport metric for domain adaptation by leverag-
ing both the hierarchical structures of the source and tar-
get data, which can lead to a better adaptation. In the con-
text of NAS, the cell-based search space can be seen as a
special type of hierarchical search space. It typically con-
sists of a two-level hierarchical structure. The inner is the
cell-level micro-architecture, which can be represented as
a directed acyclic attributed graph, where each graph node
represents a layer with the specified type of operations, and
each directed edge determines the information flow from
one node to another. The outer is the network-level macro-
architecture, which determines the layout of different cells.
In this study, we propose a hierarchical optimal transport
metric called HOTNN to measure the similarity between
different networks by leveraging the hierarchical structure
of the cell-based networks.

Bayesian Optimization for NAS. Bayesian optimization
(BO) [4,9,32] is an efficient global optimization method,
which is particularly suitable when evaluating the objective
function is costly. In fact, the training of a deep neural net-
work usually takes the order of hours or even days [24].
Hence, Bayesian optimization methods have a great po-
tential prospect in NAS. Bayesian optimization for NAS
requires comparing the similarity of different network ar-
chitectures. However, the conventional Bayesian optimiza-
tion methods mainly focus on the Euclidean and categorical
search space [ ! 1, 13], which is unsuitable for measuring the
similarity of different complex graph-like network architec-
tures. To solve this problem, various Bayesian optimization
for NAS methods [14,25,27,38] have been proposed. Jin et
al. [12] explore the use of edit distance to measure the sim-
ilarity between networks by counting how many operations
are needed to change from one network to another. White
et al. [38] design a path encoding scheme to measure the
similarity of networks by comparing differences in all paths
from the input to the output. However, the edit distance and
path encoding methods both ignore the topological struc-
ture information of the whole network [25]. To overcome
this shortcoming, Ru ef al. [27] views the network architec-
ture as an acyclic directed graph and apply the Weisfeiler-
Lehman graph kernel to compare different networks. It
is natural for them to handle graph-like search spaces and
capture complex structure information. Unfortunately, they
also miss important information about cell-based networks,
such as the number of channels at each layer, the difference
in operation types between node pairs, and the depth of the
entire network. Compared to current Bayesian optimiza-

tion for NAS methods, our proposed HOTNAS method is
more flexible as it can jointly optimize the cell-level micro-
architectures and the network-level macro-architectures.

S2. An Example of Calculating the Similarity
of Different Operations

An example of the operation tree can be seen in Fig. S1.
To meet the requirements of measuring similarity between
different operations, we group similar operations on the
same branch and divide different types of operations into
other branches. For example, we allocate the similar
“convl” and “conv3” operations into the “convolution”
branch and put the distinctly different “pool” operation into
the “pooling” branch. We define the similarity cost between
two operations as the sum of all edge weights from one op-
eration node to another operation node in the predefined op-
eration tree. As the tree depth increases, we progressively
reduce the edge weights as in Nguyen et al. [25] to enlarge
the transport cost difference between dissimilar and simi-
lar operations. For example, the transport cost between the
similar “conv1” and “conv3” operations is 0.1 4 0.1 = 0.2,
while the transport cost between the distinctly different
“convl” and “pool”is 0.1+0.9+0.9+0.1 = 2. Afterward,
we transform this operation tree into an operational similar-
ity cost matrix DP? € R™*™ of different operations in two
cell networks, where each element D (o, 0f) is computed
by summing over all edge weights from the operation 0! to
another operation 0‘} in the predefined operation tree.

S3. Proofs

A valid metric d(-, -) for neural networks should satisfy
the following requirements:

* Non-negativity. Va;,as € A, d(a1,a2) >0
o Symmetry. Vai,as € A, d(a1,a2) = d(asz, a1)
* Definiteness. a; = a2 < d(a1,a2) =0

¢ Triangle Inequality. Va,,a2, a3 € A, d(a;,a3) <
d(al. 0,2) -+ d(ag,ag)

Proof of Theorem 3.1. Let sz pp = [CF, —
D(Of.og), D = D{ds00)s Py = D(O(}'Ol)’ H” =
H(s},s1), Hy. = H(s},sy), Hj = H(sj,s{). Then the
iFGW(gBl,gBQ) is:
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where C}} = eD;;+(1—¢)Hij, Cp, = eDix+(1—¢) Hig,
CJ‘.’I = eDj; + (1 — ¢)Hj;. Hence, iFGW(Gp,,Gg,) is
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Figure S1. An example of the operation tree, similar operations are grouped in the same branch, and dissimilar operations are assigned to
the other branch. For example, we group the “conv3” and “conv1” operations into the “convolution” branch and put the distinctly different
“pool” operation into the “pooling” branch. Then we can transform this operation tree to an operational similarity matrix, like the right
part of this figure. Here we use “C” to represent the “convolution” abstract label, and “R” represents the root node of the operation tree.
The similarity between different operations is computed by summing all edge weights from one operation node to another operation node,
e.g., the transport cost between the “conv1” and “FC” operations is 0.1 + 0.9 4+ 1 = 2, the transport cost between the “conv1” and “conv3”

operations is 0.1 + 0.1 = 0.2.

equivalent to the original FGW metric if the cost function
CP/and L} ; | is the distance between the nodes and node
pairs, respectively. Next, we will demonstrate C} and
L}% ., are distances.

First, the Cf’j" is a linear combination of the oper-
ational similarity D;; and structural location difference
H;;. Le et al. [19] have demonstrated that TW is a met-
ric. Since the operational similarity D;; is built on tree-
Wasserstein (TW), it is also a metric. Since kandasamy
et al. have demonstrated that the shortest/longest/random-
walk path length difference is a pseudo-distance, the av-
erage of all path length differences H;; is still a pseudo-
distance. Therefore, the C}/ is a pseudo-distance.

Second, the L}'% ; ; is a linear combination of the opera-
tional movement cost difference |D;, — D;;| and the struc-
tural movement cost difference | H;, —H j;|. Assuming there
exist another cell network G, and node pairs (y, z) € Gp,.
It is obvious that | D;;, — D | satisfies the non-negativity and
symmetry properties, i.e., | D, — Dji| > 0,|Dy; — Dyj| =
|D;r. — Dji. If the operation information of the node pair
(i, k) and the node pair (j,1) is same, |D;, — Dj;| = 0, and
vice versa. Besides, it satisfies the triangle inequality, i.e.,
|Dik—Dﬂ|+|Dﬂ—Dyz| Z |Dzk_Dyz| Hence |Dik—Djl
is a distance. Similarity, |H;, — Hj| > 0, |Hy; — Hyj| =
|Hir — Hjl, |Hi — Hji| + |Hjy — Hy:| > |Hi — Hy-|,

. . og
thus |H;, — Hj;| is also a distance. As a result, L% p isa

distance.

Finally, the iIFGW metric is a combination of the point-
wise matching cost and pairwise matching cost. Hence, the
iFGW(Gp, ., G, ) is a pseudo-metric. iFGW(Gp,,Gp,) is 0
only if the cost function C}} and L}% , , are 0. It means the
networks G, and G, have the same number of nodes with
the same type of operations and are connected by the same

edges. O

Proof of Theorem 3.2. The transport cost S!? between
cell B! in the network a! and cell B? in the network
a’ is a convex combination of the cell-level similar-
ity iFGW(Gp,,Gp,) and the global position difference
P(B!, B?). Assuming there exists another network a® =
B}oB3...o B3}, wherer = (r1,72,...,71) € AL isits
probability distribution. Let S%* = (1 — n)I(B?, B}) +
WP(B2.BY). S — (1 — n)I(BLBY) + nP(BL BY). I
is obvious that P(B!, B?) satisfies the non-negativity and
symmetry properties, i.e., P(B}, B?) > 0, P(B.,B?) =
P(B2,Bl). When | 61(BL)/s' |=| 62(B2)/6? |, then
P(BL,B?) = 0, and vice versa. Let P(B!,B?) =|
5{(BY)/6 — 82(B2)/6? |, P(B2, BY) =| 02(B2)/8" —
5 (B3)/6" |, P(BLB}) —| 8'(B1)/6" — 5(B})/5° |,
then P(BL, B?) + P(B?,B}) > P(BL, B?). Therefore,
S +87 =85

Since iFGW(Gp,,Gp,) > 0 and P(B!, B > 0,
HOTNN(a',a?) > 0. Since iFGW(Gp,,Gp,)




iFGW(0p,,0p,) and P(BL,BY) = P(B%BY),
HOTNN(a',a?) = HOTNN(a? a'). Besides,
HOTNN(a', a?) is zero only if iFGW(Gg,,Gp,) = 0
and P(B!, B?) = 0. It means the two networks have
the same number of cells with the same architectures.
Let I'yy € REXM and Ty € RE\EXL be the solution
to HOTNN(a',a?) and HOTNN(a?,a?), respectively.
Let Tq = [Dydiag(l/g)Ta € RY*Y The Ty is
a feasible solution for HOTNN(a',a?),ie.I'ql, =
Iy diag(1/g)Tuly = Fstdlag(l/g)g = I'yly = f,
Igly = TIjdiag(l/gTgln = T[fdiag(l/g)g =
FEI]_M =Tr.
Then, we can write:
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Thus,

HOTNN(a', a?) + HOTNN(a?, a®) > HOTNN(a',a®).

(54

Therefore, HOTNN(a', a?) is a pseudo-metric. Since each
network has a chain structure, the support space of the
HOTNN metric is one-dimensional. According to the The-
orem 5 in Kolouri et al. [17], the HOTNN metric is negative
semidefinite. |

S4. Algorithm Details of HOTNAS

Here, we describe the framework of our proposed HOT-
NAS method in detail. Bayesian optimization is a sequen-
tial model-based optimization method that iteratively eval-
uates a limited number of points to find the optimum of the
objective function effectively. It uses a surrogate model to
learn the complex relationship between the input variables
and objective function and an acquisition function to care-
fully select the next promising sample points by fully bal-
ancing the exploration and exploitation of the whole search
space. Next, we will describe the surrogate model and ac-
quisition function in our proposed HOTNAS method.

Surrogate model. We choose the Gaussian process (GP)
as our surrogate model because it provides a well-defined

predictive distribution and good uncertainty estimation [2].
An important property of the Gaussian process is that if a
gaussian prior is assumed over the objective function, the
posterior distribution remains a smooth gaussian distribu-
tion [39], where the predictive mean u(a) and predictive
variance o (a) are represented as follows:

p(a)=k(a,A) Ky, (S5)
0% (a) = k(a,a) —k(a,A) K 'kT (a,A), (S6)

where A = [a!,....,a™]andy = [y},..., y™] are the
current network architectures and the corresponding val1d1—
tion loss on the initial observation set Dy = {a =
f(a")}°,, K is the kernel matrix whose element is the ker-
nel function k(a’, a’) between different input networks on
the observation set Dy.

Acquisition Function The acquisition function is a util-
ity function that evaluates the possibility that a neural net-
work architecture is optimal. To efficiently guide the search
for the optima, the acquisition function balances the explo-
ration of unknown search regions and the exploitation of ex-
isting architectures. Common acquisition functions include
probability of improvement (PI) [18], expected improve-
ment (EI) [13], and upper confidence bound (UCB) [33].
Here, we choose UCB as our acquisition function because
it is computationally simple, easy to optimize, and has an
excellent theoretical guarantee for convergence [33]. The
UCB acquisition function is defined as:

w(a) = (a)—a-o,(a), a>0, (S7)

where 11 (@) and o (a) are the predicted mean and standard
deviation of the GP surrogate model at architecture a in
the ¢th iteration, « is the hyperparameter that balances the
exploration and exploitation. We set « at initialization to
\/3log(2(n + 1)) as sug-
gested by Srinivas et al. [33], where ¢ is the number of it-
erations. To optimize this function, we first generate a set
of candidate architectures P; € A by using the mutation
method same as White er al. [38]. After that, we compute
the UCB value of each candidate architecture and select the
most promising architecture with the maximum acquisition
function, i.e., Gy, = arg max, ¢ p, uy(@).

The general algorithm of our proposed HOTNAS
method is summarized in the Algorithm 1. We first initial-
ize ng neural network architectures by randomly sampling
from the cell-based network search space and then evalu-
ate these architectures to obtain the initial observation set
Dy = {a',y' = f(a’)}°,. After that, we compute the
HOTNN dlstance between different network pairs in the
current observation set D; = Dy and embed it in the GP
surrogate model. Afterward, we fit the GP model on the cur-
rent observation set D, and construct the UCB acquisition

ap = 2 and decay it oy =



function based on the predictive distribution of the GP sur-
rogate model. We then generate a candidate pool of the net-
work architectures by mutating the current best-performing
network architectures and selecting the next promising ar-
chitecture ayey with the largest UCB value. The surro-
gate mode is updated by fitting on the new observation set
Dii1 = Di U {@pews Ynew ;- This process continues until
it finds the best network architecture with the lowest valida-
tion loss or the maximum number of iterations 7’ is reached.

Algorithm 1: Hierarchical Optimal Transport for
Neural Architecture Search
Input: Total number of iterations N, initial
datapoints D), search space A, The maxinum
iterations 1’
Output: The best architecture a*
1 fort=0toT — 1do
2 Compute HOTNN metric between different
architectures on the current observation set

Dy =Dy ;

3 Embed the HOTNN metric to the kernel function
of GP;

4 Fit the GP on the current observation set D;;

5 Construct the UCB acquisition function based on
the predictive mean and variance (see Eq. (S7));

6 Generate a pool of candidate architectures P; by
mutating the current best-performing
architectures;

7 Select the next promising architectures
Qe = ATZMAX e p, Ut(Q);

8 Evaluate a,., to obtain its validation 10Ss ¥,ew;

9 Update the observation set

D1+l - Dt ) {anew~ ynew};
10 end
11 return the best-performing architecture
a* = argmingcp,. f(a)

S5. Illustrations of the HOTNN distance

In order to demonstrate that the HOTNN metric provides
a reliable measure for cell-based networks, we have visu-
alized the relationship between the HOTNN distance and
the difference in validation errors on the DARTS bench-
mark. To achieve this, we first generated 200 networks
by randomly sampling from the DARTS search space and
computing the HOTNN distance between them. We also
included the edit distance and the OTMANN distance for
comparison. As depicted in Fig. S2, each point on the
graph represents a pair of networks. It is noteworthy that
the edit distance is a discrete measure and fails to reflect
the smooth variation of the validation error. Our proposed
HOTNN metric, on the other hand, is smooth in relation

to validation performance and provides a reasonable mea-
sure of the similarity between different networks. When
the HOTNN distance is low, the pair of networks exhibit a
small difference in the validation performance. However, as
the HOTNN distance increases, the validation performance
differences become more scattered. This aligns with the no-
tion that similar networks possess a small difference in the
validation performance, while dissimilar networks exhibit a
large variation in the validation performance. In contrast,
OTMANN fails to capture this phenomenon in the DARTS
search space, likely due to its disregard of the similarity be-
tween cells in the modular cell-based search space. Further-
more, the results indicate that our proposed HOTNN metric
correlates with validation error performance and can thus
be seamlessly embedded into the Bayesian optimization for
NAS framework.

S6. Experimental settings

To ensure the comparability of all experiments, we run
each experiment five times initialized by different random
seeds, and report the mean and standard performance of dif-
ferent methods across various tasks. We use the POT [8] li-
brary to implement our proposed HOTNN metric. We con-
duct all experiments on a machine with an Intel Xeon Gold
5218R CPU and four NVIDIA GeForce RTX 3090 GPUs.
Next, we will describe the experimental settings of all meth-
ods in different search spaces.

Experimental Settings on TransNAS-Bench-101 Bench-
mark. The TransNAS-Bench-101 benchmark is a tabular
benchmark that covers seven common vision tasks. Each
task has a different evaluation metric. For object classifi-
cation, scene classification, and jigsaw tasks, we use the
best top-1 accuracy acc as the evaluation metric and use
100 — acc as the evaluation loss. For the room layout
task, we choose the best negative log loss negloss as the
evaluation metric and use —100negloss as the evaluation
loss. For the semantic segmentation task, we choose the
best mloU as the evaluation metric and use 100 — mloU as
the evaluation loss. For autoencoding and surface normal
tasks, we choose the best SSIM evaluation metric and use
100(1 — SSIM) as the evaluation loss. Here we choose its
macro skeleton search space. The whole network is stacked
with four to six modules, with each module comprising two
residual blocks. The residual blocks can choose whether to
downsample features with a stride of one or two. We set the
similarity between the residual blocks with down-sampling
and without down-sampling to 1. We generate a pool of 100
candidate architectures by mutating the current best archi-
tectures at each iteration. We then set the number of initial
architectures to 20 and the maximum number of iterations to
100. Except for the above changes, the implementation and
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Figure S2. An illustration of the relationship between different distances and validation error differences on the DARTS benchmark: (a)

HOTNN (b) OTMANN (c) edit distance.

Table S1. Comparisons of the impact of macro-architectures and
micro-architectures in the final performance, where HOTNAS-
WOA represents HOTNAS without macro-architectures and HOT-
NASWOI represents HOTNAS without micro-architectures.

Algorithm Valid loss Test loss Search time (GPU days)  Params (M)
BANANAS 5.6240.04  2.7240.06 10.64+0.2 4.240.1
BO-TW 5.5840.02  2.6140.05 9.440.6 4.1+0.4
BO-TW-2G 5.434+0.01  2.5440.02 10.940.1 3.740.2
NAS-BOWL  5.764+0.06  2.7840.09 11.44+0.3 4.6£0.1
HOTNASWOA  5.44+40.01 2.64+0.05 4.64£0.1 8.7+0.3
HOTNASWOI = 5.644+0.01 2.56+0.12 8.2+0.3 3.940.1
HOTNAS 5.3740.01 2.4310.04 9.840.1 3.610.2

experimental settings
as the original study.

of other methods remain unchanged

Experimental Settings on NAS-Bench-101 Benchmark.
The NAS-Bench-101 is also a tabular benchmark that fo-
cuses on searching a single cell architecture. Note that
the NAS-Bench-101 benchmark comprises a larger number
of network architectures than the TransNAS-Bench-101.
Therefore, we increase the pool size to 200 at each iteration.
We then set the number of initial architectures to 20 and the
maximum number of iterations to 200. For better adapta-
tion to the cell architectures, we use a modified version of
the NASBOT proposed by Nguyen ef al. [25]. With the
exception of the aforementioned modifications, the imple-
mentation and experimental settings of other methods are
consistent with those of the original study.

Experimental Settings on DARTS Benchmark.
DARTS is a large non-tabular benchmark that does
not provide the training and test performance of each
network. To accommodate our settings, we first transform
the edge-attributed directed acyclic graph representation
into the node-attributed directed acyclic graph represen-
tation as proposed by Ru et al. [27]. Since each cell in
the DARTS search space has two input nodes from the
previous two cells, we compute the sum of structural

position differences relative to each input as the position
difference between nodes in different networks when
computing the HOTNN metric. We follow the most
common DARTS setup [5, 22, 41]. During the search
stage, we train each network using half of the CIFAR-10
training data for 100 epochs with a batch size of 64, an
initial channel size of 16, and validate using the other
half of the CIFAR-10 training data. We optimize network
weights using the SGD optimizer with a momentum of
0.9, a weight decay of 3 x 107%, and an initial learning
rate of 0.1, which is annealed to zero over 100 epochs
following a cosine schedule. We set the number of initial
architectures to 20 and the maximum number of iterations
to 100. Since the search space is vast, we generate a pool
of 200 candidate networks at each iteration by mutating
the current top-5 best-performing architectures and 100
networks by randomly sampling from the search space.
After the searching stage, we select the best-performing
architecture with the lowest validation loss and evaluate it
on the CIFAR-10 test set. During the evaluation stage, we
train the network from scratch using the entire CIFAR-10
training set for 600 epochs with a batch size of 128, an
initial channel size of 36, and optimize the network weights
using the SGD optimizer with a momentum of 0.9, a weight
decay of 3 x 107%, a norm gradient clipping at 5, and an
initial learning rate of 0.025, which is annealed to zero over
600 epochs following a cosine schedule. Furthermore, we
directly transfer the network to the CIFAR-100 dataset. The
training settings are the same as in the CIFAR-10 dataset
except for the weight decay is 5 x 1074

S7. Ablation Studies

Ablation Study on the importance of operational simi-
larity and location difference. During the construction
of the iIFGW metric, we take into account both operational
similarity and positional differences. A natural question is
which one is more important. To address this issue, we



Table S2. Comparisons of experiment results on the NAS-Bench-
101 benchmark.

Algorithm Valid loss Test loss Search time (h)  Params (M)
Evolutionary search  5.44+0.01  5.96+0.01 1.924+0.13 11.684+0.26
Random search 5.64+0.01 6.2240.02 1.5440.27 12.3240.26
BO-edit 5.3940.02  5.9640.02 1.2040.12 10.8140.11
NASBOT 5.58+0.03 6.16+£0.03 1.454+0.26 10.2240.20
BANANAS 541+£0.02  6.05+0.03 0.92+0.08 11.654+0.48
BO-TW 5.38+0.05 6.02+0.03 1.02+0.06 9.12+0.94
BO-TW-2G 541+£0.01  5.94+0.02 0.91+£0.12 9.84+0.62
NAS-BOWL 5.49+0.02  6.10+£0.02 1.61+0.18 10.2140.11
HOTNAS 5.36+0.01 5.94+0.01 0.83+£0.01 9.431+0.08

conducted an experiment where we compared the impact of
HOTNAS without operational similarity (by setting ¢ = 0
in the iFGW metric) to HOTNAS without positional differ-
ence (by setting € = 1 in the iFGW metric) on the final per-
formance. Here we choose to use NAS-Bench-101 bench-
mark for this comparison since its macro-architectures are
fixed and the distance between the whole network pairs is
equivalent to the distance between the cell network pairs.
Our results indicate that operation similarity (valid loss:
5.62 £ 0.02) is more crucial than location difference (valid
loss: 5.47 £ 0.06) in determining the final performance.

Ablation Study on the impact of macro-architectures
and micro-architectures. To investigate the impact of
macro-architectures and micro-architectures on our HOT-
NAS method, we choose the widely used DARTS bench-
mark as our example. Firstly, we fixed the macro-
architectures of the entire search space by setting the net-
work depth to 20 and then observed the effect of macro-
architectures on the final performance of our HOTNAS
method. Furthermore, we compared our method with other
cell network search methods such as BANANAS [38], BO-
TW [25], BO-TW-2G [25], and NAS-BOWL [27]. To
determine the extent to which performance can degrade
when ignoring micro-architectural changes, we fixed the
micro-architecture with the best performance discovered
by our proposed HOTNAS method. Tab. SI shows the
performance comparison of HOTNAS when either macro-
architectures or micro-architectures are ignored. The results
indicate that the performance of HOTNAS significantly
decreases when either the macro-architecture or micro-
architecture is ignored. Our results demonstrate that the
performance of HOTNAS significantly decreases when ei-
ther the macro-architecture or micro-architecture is ignored.
This highlights the critical role that both macro-architecture
and micro-architecture play in the final performance of our
HOTNAS method.

S8. Additional Figures and Tables
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