IDGI: A Framework to Eliminate Explanation Noise from Gradients Integration (Appendix)

1. Theorem

Theorem 1 Given a function $f_c(x) : \mathbb{R}^n \to \mathbb{R}$, points $x_j, x_{j+1}, x_{j_p} \in \mathbb{R}^n$, then the gradient of the function with respect to each point in the space \mathbb{R}^n forms the conservative vector fields \vec{F} and further define the hyperplane $h_j = \{x : f_c(x) = f_c(x_j)\}$ in \vec{F} . Assume the Riemann Integration accurately estimates the line integral of the vector field \vec{F} from points x_j to x_{j+1} and x_{j_p} e.g. $\int_{x_j}^{x_{j_p}} \frac{\partial f_c(x)}{\partial x} dx \approx \frac{\partial f_c(x_j)}{\partial x_j}(x_{j_p} - x_j)$, and $x_j \in h_j, x_{j_p}, x_{j+1} \in h_{j+1}$. Then:

$$\int_{x_j}^{x_{j+1}} \frac{\partial f_c(x)}{\partial x} dx \approx \int_{x_j}^{x_{j_p}} \frac{\partial f_c(x)}{\partial x} dx.$$

Proof.

$$\int_{x_j}^{x_{j+1}} \frac{\partial f_c(x)}{\partial x} dx = f_c(x_{j+1}) - f_c(x_j)$$

$$\approx \frac{\partial f_c(x_j)}{\partial x_j} (x_{j+1} - x_j)$$

$$= f_c(x_{j_p}) - f_c(x_j)$$

$$= \frac{\partial f_c(x_j)}{\partial x_j} (x_{j_p} - x_j)$$

$$= \int_{x_j}^{x_{j_p}} \frac{\partial f_c(x)}{\partial x} dx \qquad (1)$$

2. IG with IDGI

The Integrated Gradients algorithm requires a specified reference image to compute the attribution. One often selects a black or white picture as a reference point, resulting in the zero attribution value to pixels with the same value as the reference. This is due to the fact that these pixel values do not change while traveling from the reference image to the original image. However, these pixels may still be crucial for the classifier to make the decision, and merit attribution differs from zero. For example, as shown in Figure 1, the *Xception* model makes the prediction correctly on the given image has a black dog. When utilizing IG for providing an explanation, the body of the dog will be assigned zero attributions since the reference (black) image has the same

pixel value as the dog. Intuitively, the explanation method should give non-zero values to these black pixels, since they represent the dog's body and are assumed to be significant characteristics. Alternatively, if the attribution value is zero, it is likely because the feature is insignificant and not because of the explanation method's design. In contrast to the original IG, IG with IDGI might potentially assign non-zero values to pixels with the same value as the reference picture, a desirable trait for a superior explanation technique.

Figure 1. Original image is predicted *Tibetan terrier* from Xception classifier. Both 1b and 1c are attributions from IG and IG+IDGI with the black image as reference. Since the pixels are also black for the original image on the dog region, by design, IG is not able to assign important values to those pixels, however, ID+IDGI overcomes the issue.

3. Visual Examples

We present more visual examples in Figs. 2 to 6.

4. Distribution by Normalized Entropy and MS-SSIM

We present more distribution that compares Normalized Entroy and MS-SSIM in Figs. 7 to 17.

5. AIC and SIC with XRAI

Tab. 1 and Tab. 2 show the result of AIC and SIC for all methods and its version with XRAI. Similarly, Tab. 3 and Tab. 4 show the result of AIC and SIC with MS-SSIM for all methods and its version with XRAI.

AUC of AIC								
Models		IG-based Methods						
	IG	+Ours	GIG	+Ours	BlurIG	+Ours	VG	
DenseNet121	.161	.300	.141	.252	.192	.230	.087	
DenseNet169	.160	.288	.154	.254	.181	.216	.089	
DenseNet201	.185	.307	.182	.269	.213	.246	.110	
InceptionV3	.203	.343	.189	.338	.266	.301	.127	
MobileNetV2	.098	.233	.114	.204	.145	.197	.068	
ResNet50V2	.162	.253	.162	.248	.189	.210	.108	
ResNet101V2	.177	.268	.163	.253	.198	.215	.116	
ResNet151V2	.186	.281	.165	.258	.205	.229	.112	
VGG16	.145	.244	.141	.199	.181	.222	.108	
VGG19	.153	.263	.150	.219	.204	.240	.117	
Xception	.238	.404	.239	.381	.309	.355	.174	
				With X	RAI			
DenseNet121	.438	.479	.460	.460	.437	.452	.434	
DenseNet169	.468	.508	.483	.492	.466	.480	.462	
DenseNet201	.439	.476	.460	.468	.442	.461	.449	
InceptionV3	.477	.506	.472	.513	.479	.503	.496	
MobileNetV2	.407	.442	.437	.435	.410	.436	.424	
ResNet50V2	.402	.433	.428	.438	.409	.410	.417	
ResNet101V2	.415	.447	.433	.445	.416	.422	.424	
ResNet151V2	.410	.443	.421	.435	.406	.416	.412	
VGG16	.393	.423	.422	.418	.402	.413	.396	
VGG19	.386	.416	.417	.414	.396	.408	.393	
Xception	.486	.521	.507	.525	.492	.520	.511	

Table 1. AUC of AIC

AUC of SIC								
Models			IG-bas	ed Metho	ods		Other	
	IG	+Ours	GIG	+Ours	BlurIG	+Ours	VG	
DenseNet121	.054	.228	.036	.157	.085	.134	.015	
DenseNet169	.052	.230	.045	.170	.083	.130	.016	
DenseNet201	.068	.241	.058	.183	.109	.155	.019	
InceptionV3	.087	.294	.061	.286	.171	.232	.029	
MobileNetV2	.020	.145	.023	.111	.043	.103	.011	
ResNet50V2	.077	.210	.067	.201	.099	.158	.025	
ResNet101V2	.095	.231	.070	.201	.117	.165	.026	
ResNet151V2	.101	.249	.065	.212	.122	.177	.025	
VGG16	.046	.166	.039	.104	.082	.141	.021	
VGG19	.046	.177	.041	.115	.098	.151	.023	
Xception	.119	.363	.107	.336	.218	.296	.054	
				With X	RAI			
DenseNet121	.407	.464	.435	.445	.403	.428	.404	
DenseNet169	.450	.496	.465	.475	.439	.458	.435	
DenseNet201	.427	.473	.449	.462	.419	.449	.432	
InceptionV3	.450	.493	.449	.499	.441	.481	.477	
MobileNetV2	.351	.398	.391	.394	.353	.393	.374	
ResNet50V2	.401	.439	.430	.445	.404	.412	.418	
ResNet101V2	.424	.463	.445	.464	.419	.428	.433	
ResNet151V2	.413	.453	.423	.445	.401	.424	.414	
VGG16	.343	.382	.381	.376	.352	.368	.347	
VGG19	.337	.376	.374	.373	.347	.362	.344	
Xception	.458	.502	.486	.508	.465	.503	.488	

References

 Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viégas, and Michael Terry. Xrai: Better attributions through regions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4948–4957, 2019. 8, 9, 10, 11

AUC of AIC with MS-SSIM								
Models			IG-bas	ed Metho	ods		Other	
	IG	+Ours	GIG	+Ours	BlurIG	+Ours	VG	
DenseNet121	.229	.305	.231	.280	.216	.277	.186	
DenseNet169	.241	.314	.249	.297	.218	.289	.205	
DenseNet201	.254	.323	.262	.303	.237	.303	.216	
InceptionV3	.264	.333	.268	.333	.264	.323	.228	
MobileNetV2	.179	.259	.197	.238	.186	.241	.150	
ResNet50V2	.225	.277	.239	.274	.209	.260	.198	
ResNet101V2	.235	.284	.243	.277	.215	.265	.206	
ResNet151V2	.247	.302	.250	.292	.227	.284	.212	
VGG16	.205	.271	.212	.245	.204	.259	.179	
VGG19	.211	.275	.220	.252	.214	.266	.188	
Xception	.281	.362	.293	.356	.284	.345	.254	
				With X	RAI			
DenseNet121	.342	.376	.360	.367	.336	.369	.351	
DenseNet169	.375	.407	.386	.397	.368	.398	.382	
DenseNet201	.354	.388	.370	.380	.355	.387	.370	
InceptionV3	.357	.384	.355	.386	.348	.390	.373	
MobileNetV2	.310	.339	.333	.334	.310	.339	.329	
ResNet50V2	.302	.326	.320	.330	.302	.322	.317	
ResNet101V2	.316	.342	.329	.342	.312	.334	.327	
ResNet151V2	.314	.341	.321	.334	.308	.335	.321	
VGG16	.314	.339	.334	.334	.319	.336	.319	
VGG19	.309	.333	.330	.329	.315	.332	.315	
Xception	.370	.402	.391	.406	.372	.408	.396	

Table 3. AUC of SIC with MS-SSIM

AUC of SIC with MS-SSIM								
Models			IG-bas	ed Metho	ods		Other	
	IG	+Ours	GIG	+Ours	BlurIG	+Ours	VG	
DenseNet121	.184	.263	.188	.239	.172	.236	.139	
DenseNet169	.205	.282	.214	.263	.182	.256	.166	
DenseNet201	.212	.286	.221	.265	.194	.266	.170	
InceptionV3	.211	.287	.215	.285	.214	.276	.179	
MobileNetV2	.126	.204	.144	.187	.130	.188	.096	
ResNet50V2	.196	.254	.213	.250	.177	.236	.167	
ResNet101V2	.210	.265	.221	.256	.188	.244	.180	
ResNet151V2	.221	.282	.227	.270	.197	.261	.186	
VGG16	.163	.234	.174	.210	.166	.224	.137	
VGG19	.173	.240	.186	.219	.177	.233	.149	
Xception	.223	.312	.233	.304	.229	.293	.194	
				With X	RAI			
DenseNet121	.290	.332	.309	.324	.282	.324	.306	
DenseNet169	.327	.364	.338	.356	.314	.353	.338	
DenseNet201	.311	.349	.326	.345	.301	.350	.333	
InceptionV3	.300	.334	.295	.342	.291	.343	.323	
MobileNetV2	.238	.270	.264	.270	.239	.273	.262	
ResNet50V2	.273	.305	.294	.308	.270	.299	.295	
ResNet101V2	.291	.323	.305	.322	.283	.312	.306	
ResNet151V2	.286	.322	.294	.313	.277	.314	.302	
VGG16	.256	.285	.280	.280	.260	.284	.264	
VGG19	.252	.278	.276	.277	.258	.279	.262	
Xception	.311	.345	.331	.352	.311	.353	.341	

Table 4. AUC of SIC with MS-SSIM

Original	VG	IG	lG+Ours	GIG	GIG+Ours	BlurIG	BlurIG+Ours
DenseNet121			1 × 1 × 1			0	
Densenet169						S.	
Dense Net 201						JO.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
InceptionV3						¢,	
MobileNetV2					*	170	
ResNet50V2			A.S.		an an	9	
ResNet101v2	deres :					∂. O	
ResNet151V2		N.				-0	
VGG16						- Da	
VGG19							
Xception	2					ð.	

Figure 2. Predicted Label for all models: bucket

	Original	VG	IG	lG+Ours	GIG	GIG+Ours	BluriG	BlurIG+Ours
DenseNet121	S.		R. A.	ŝ.	Sec.	19-3 g	K.	* *
DenseNet169	C E		6	ite jan	P . 7			1. A. P.
DenseNet201	75					2. S.		
InceptionV3	S	100	Sec.	N.A.	Ser.	- 4-0 4-2	Ser.	
MobileNetV2		14	17					
2 ResNet50V2						**		
ResNet101V2								
ResNet151V2				See.				
VGG16					at any	in a		
VGG19		1				· •		
Xception	and B	all and	(Chan)				Maria	÷¥.

Figure 3. Predicted Label for all models: crane

Original	VG	IG	lG+Ours	GIG	GIG+Ours	BlurlG	BlurIG+Ours
DenseNet121			S.			-	
DenseNet169							
DenseNet201							
InceptionV3		2				-	
MobileNetV2	14						
ResNet50V2	200					4	
ResNet101V2							
ResNet151V2			*				
VGG16			A.		A.	*	*
VGG19	4.4						
Xception			des Vi	-			-de

Figure 4. Predicted Label for all models: mergus serrator

Figure 5. Predicted Label for all models: *partridge*

Figure 6. Predicted Label for all models: quail

Figure 7. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: DenseNet121

Figure 8. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: DenseNet169

Figure 9. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: DenseNet201

Figure 10. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: Resnet50V2

Figure 11. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: Resnet101V2

Figure 12. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: Resnet151V2

Figure 13. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: InceptionV3

Figure 14. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: Xception

Figure 15. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: MobileNetV2

Figure 16. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: VGG16

Figure 17. Modified distribution of bokeh images over MS-SSIM and Normalized Entropy [1]. Model: VGG19