
Supplemental Materials for “K3DN: Disparity-

aware Kernel Estimation for Dual-Pixel Defocus Deblurring”

In this supplementary material, we provide additional
implementation details (Appendix A), additional exper-
iment results (Appendix B), additional ablation study
(Appendix C), and limitations (Appendix D) for our
K3DN framework.

A. Additional Implementation Details

K3DN uses a 3-level U-net architecture. We use AdamW
optimizer [13] with �1 = 0.9, �2 = 0.999, learning rate
= 3 ⇥ 10

�4, and weight decay = 10
6. We use the ‘co-

sine annealing with warmups’ learning rate scheduler, and
set the ‘cycle steps’, ‘warmup steps’, and ‘minimum learn-
ing rate’ to 200, 100, and 6 ⇥ 10

�5. For the DPD-blur
dataset [1], our model is trained for 20k iterations in a two-
stage manner. First, we train our model without the SRP
blocks from scratch for 9.8K iterations. Second, we freeze
all model weights and train the newly added parameters
from the SRP blocks for another 10.2K iterations, while ex-
cluding the reblurring loss Lreb from the overall training
loss L as our target is to preserve the sharp regions of de-
focus blurred DP pair. For the DDD-syn dataset [15] and
RDPD dataset [2], we adopt resource-constrained training,
as the synthetic datasets are easy to be overfitted. Specifi-
cally, our model is respectively trained for 4k and 40k iter-
ations on the two datasets. When the performance of other
methods is not available, we train them with the same itera-
tions for a fair comparison.

Our Ldeb uses a combination of Multi-Scale Charbon-
nier loss Lchb [25], Multi-Scale Edge loss Ledg [25] and
Multi-Scale Frequency loss Lfrq [14], i. e., Ldeb = Lchb +

�2Ledg + �3Lfrq . Meanwhile, we define Lreb as a mean
squared error-based loss. We set �1 = 1 ⇥ 10

�1, and
�2 = 5 ⇥ 10

�2, �3 = 1 ⇥ 10
�2. During optimization,

we apply gradient norm clipping at 1⇥ 10
�2.

The detailed architecture of our K3DN framework is
summarised in Tab. 13. All convolution layers apply a
LeaklyReLU with a negative slope of 0.2. We use Num as a
column attribute to represent the number of replication for
current layers. We denote bn and bc as the base number
of replication and base channel. The configurations of our
model variants (i. e., Tiny, Lightweight, and Large) are in
Tab. 6.

Table 6. Configurations of different model variants.
Variants bn bc

Tiny 2 24
Lightweight 2 32

Large 4 48

Sharp Image Blurred Image Reblurred Image

Sharp Image Blurred Image Reblurred Image

Sharp Image Blurred Image Reblurred Image

Figure 9. Samples of reblurred images (zoom in for better quality).

B. Additional Experiment Results

We briefly investigate the reblur capability of our model
in Fig. 9. Next, we verify our model generalization abil-
ity in Fig. 11. We then study our disparity estimator that is
trained in an unsupervised manner, in Fig. 12. In the fol-
lowing, we visualize the sub-kernel with the largest weight
assigned by the disparity vector for different image regions
in our PSF block (Fig. 13). Note that we linearly trans-
form the image space to feature space and train a PSF
block for better kernel visualization. Finally, we present
more comparisons with state-of-the-art methods (Fig. 14,
Fig. 15, Fig. 16, Fig. 17 and Fig. 18), in addition to the
Fig. 6 and Fig. 7 from our main paper. Specifically, we
compare with RDPD [2], KPAC [19], IFAN [10], Deep-
RFT [14], DDDNet [15], RDPD [2], BAMBNet [11], and
Restormer [24]. Note that we use their publicly available
checkpoint to generate the all-in-focus restorations.

We also test our model on Google Pixels dataset [23] in



Table 7. Performance evaluation on Google Pixels DP image
dataset from [23]. The performance of our tiny model is presented.

Model PSNR" SSIM" RMSE rel(10�2) # MAE(10�1) #
Wiener Deconv [27] 25.81 0.704 5.13 0.320
DPDNet [1] 25.59 0.777 5.25 0.340
Xin et al. [23] 26.69 0.804 4.93 0.270
IFAN [10] 31.49 0.867 2.66 0.164
Restormer [24] 31.27 0.859 2.73 0.161

Ours 31.59 0.891 2.63 0.165
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Figure 10. Comparison of image restoration performance on the
Google Pixels dataset [23].
Table 8. Single image defocus deblurring of our method on the
DPD-blur dataset.

Model PSNR" SSIM" RMSE rel(10�2) # MAE(10�1) #
Ours (Tiny) 25.85 0.794 5.10 0.380
Ours (Lightweight) 25.95 0.799 5.04 0.377
Ours (Large) 26.11 0.805 4.95 0.372

Tab. 7 and Fig. 10. Note that the brightness and contrast
of restorations are adjusted for better visualization. This
dataset is captured by Google Pixels smartphone, and pro-
vides 17 pairs of defocus blurred DP images and associ-
ated all-in-focus images. It covers both indoor and outdoor
scenes. We test K3DN framework by using the pretrained
checkpoint on the DPD-blur dataset. Similarly, we present
the performance of Restormer [24] and IFAN [10], the latest
state-of-the-art method, in this dataset.

Moreover, we adapt our K3DN framework to perform
the single image defocus deblurring task (i. e., use the cen-
ter view of the DP image) on the DPD-blur dataset. The
performance is presented in Tab. 8.

C. Additional Ablation Study

All ablation studies are conducted with our lightweight
model.
The alignment of encoder and disparity estimator. As
discussed in Sec. 3, FB and R are spatially aligned with
each other, while each i-th layer features of FB can be
founded by performing a nearest neighbor interpolation. In
other words, each vector ri 2 R is spatially aligned with
F

i
B 2 FB . By varying the downsampling rate (e.g., the

stride of convolution) and resizing the inputs for our dispar-
ity estimator, for each r

i, the spatial size (i. e., Hf

Hd

⇥ Wf

Wd

)
of the aligned feature F

i
B is changed accordingly. Here,
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Figure 11. The generalization ability of disparity-based methods
(an expansion of Fig. 7). Here, we mainly consider the disparity-
based approaches, i. e., IFAN [10] and Xin et al. [23] (refer to
Fig. 7 for restoration results of other methods). Note that all meth-
ods are not trained and specialized for the DPD-disp dataset [16],
i. e., our model and IFAN use the pretrained checkpoint on the
DPD-blur dataset [1], and Xin et al. uses the provided and pre-
calibrated kernels. We present two kinds (Gray and sRGB) of re-
stored images for Xin et al. [23], where the sRGB restored images
are generated by deblurring on each channel independently.

we study the impact (Tab. 9) of Hf

Hd

⇥ Wf

Wd

in the DPD-blur
dataset [1].

Table 9. Alignment of encoder and disparity estimator.
Hf

Hd

⇥ Wf

Wd

9⇥ 9 14⇥ 18 18⇥ 14 18⇥ 18 27⇥ 27

PSNR" 26.76 26.77 26.84 26.72 26.60

With Hf

Hd

= 18 and Wf

Wd

= 14, we find the best perfor-
mance. This is potentially determined by the complexity of
the blur model in the dataset. During testing, to be compat-
ible with diverse sizes of model inputs, we resize the inputs
to the multiples of the spatial size, and then we rescale the
model outputs to the original size.
Spatial size of the kernel set. We analyze the spatial size
of the kernel set (i. e., Hk ⇥Wk) of the candidate kernel set
K in Tab. 10.

Table 10. Impact of the spatial size of the kernel set.
Hk ⇥Wk 3⇥ 3 5⇥ 5 7⇥ 7 9⇥ 9 11⇥ 11 13⇥ 13

PSNR" 26.81 26.79 26.77 26.84 26.79 26.76

Considering the model performance, we set Hk = 9 and
Wk = 9.
Number of the PSF blocks. By fixing all other com-
ponents of a lightweight K3DN framework, we study the
optimal number of PSF blocks in Tab. 11. Note that the



(a)
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Figure 12. (a)-(b) Examples of input left view DP images and their
associated disparity feature clusters. With obtained features from
our disparity estimator, we perform a k-means algorithm to cluster
similar disparity features across the image. The assigned cluster-
IDs are used to colorize the latent features processed by the PSF
block.
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Figure 13. Sample kernels from the PSF block.

lightweight K3DN has 4 PSF blocks (i.e., 2 ⇥ bn in Ap-
pendix A and Tab. 13).

Table 11. Number of PSF blocks.
#PSF blocks 1 2 3 4 5 6 7

PSNR" 26.69 26.72 26.76 26.84 26.81 26.77 26.73

Conceptually, the more PSF blocks, the more com-
plex blur models that we can handle. However, with the
lightweight model size, there is limited feature semantics
that can be embedded in the feature space due to the small
model size. Therefore, a large number of PSF blocks can
potentially harm the model generalization ability, and we
find the optimal number of PSF blocks is 4.
Inference speed. We investigate the inference speed of
K3DN and other state-of-the-art methods in Tab. 12. The
experiments are conducted under a single NVIDIA A40
GPU. We use batch size 1, warm up the GPU for 5 iter-
ations, and average 30 random testing results. In compari-

son to the latest state-of-the-art method, Restormer [24], our
method has significant inference speed improvements with-
out any performance deterioration (refer to Tab. 1, Tab. 2
and Tab. 3 for the performance comparison).

Table 12. Inference speed of past methods.
Method Restormer BAMBNet DeepRFT DRBNet

Second 2.38 0.970 1.03 0.197

Method IFAN Ours
(Tiny)

Ours
(Lightweight)

Ours
(Large)

Second 0.142 0.236 0.318 0.578

D. Limitations

Though our PSF blocks follow the blur mode of the DP
image formulation (Sec. 3.1) and our K3DN framework
achieves a favorable deblur performance, the exact inver-
sion for the model is not maintained. For example, in the
deblurring and reblurring processes, our encoder and de-
coder do not have an exact inverse constraint (i. e., they are
trained to perform encoding and decoding), and only the in-
version within each PSF block is maintained. In our future
work, we plan to study fully invertible network architectures
for K3DN.



Table 13. K3DN architecture. We use # and " to denote downsampling and upsampling, respectively. For the PSF block, a point-wise
convolution [20] and a residual connection are also added to improve the feature representation ability, where the kernel sizes are specified
accordingly. Note that a point-wise convolution is easy to invert by using the LU decomposition [8].

Type Input Activation Kernel Channel Stride Padding Dilation Num Output

D
is

pa
rit

y
Es

tim
at

or

FE BL#4 - - - - - - 1 lt
FE BR#4 - - - - - - 1 rt
cost {lt, rt} - - - - - - 1 c1

conv3d c1 ReLU 3 32 1 1 1 1 c2
conv3d c2 ReLU 3 48 2 1 1 1 c3
conv3d c2 ReLU 3 48 1 1 1 1 c4
conv3d c4 ReLU 3 64 2 1 1 1 c5
conv3d c5 ReLU 3 64 1 1 1 1 c6
Reshape, Pooling based on Patch Size, and Linear projection. R

# Shared Feature Extractor.

FE
(F

ea
tu

re
Ex

tra
ct

or
)

conv Input ReLU 3 32 1 1 1 1 b1

conv b1 ReLU 3 64 1 1 1 1 b2
conv b2 ReLU 3 128 1 4 4 1 b3
conv b3 ReLU 3 128 1 8 8 1 b4

AvgPool b4 - 16 - 16 - - - b5

conv b5 ReLU 3 32 1 1 1 1 b6
AvgPool b4 - 32 - 32 - - - b7

conv b7 ReLU 3 32 1 1 1 1 b9
conv {b4, {b6}"16, {b8}"32} ReLU 3 96 1 1 1 1 b9
conv b9 ReLU 3 32 1 1 1 1 b10

# Deblurring Framework. Shared Encoder, PSF Blocks, and Decoder.

En
co

de
r

conv {BL,BR} LeakyReLU 3 bc 2 1 1 1 d1
res d1 LeakyReLU 3 bc 1 1 1 bn d2

conv d2 LeakyReLU 3 2⇥bc 2 1 1 1 d3
res d3 LeakyReLU 3 2⇥bc 1 1 1 bn d4

conv d4 LeakyReLU 3 4⇥bc 2 1 1 1 d5
res d5 LeakyReLU 3 4⇥bc 1 1 1 bn FB

PSF {FB,R} - {9, 1} 4⇥bc 1 {5, 1} 1 2⇥bn F̂B

D
ec

od
er

dconv F̂B LeakyReLU 4 2⇥bc 2 1 1 1 u1
SRP {d4, u1} LeakyReLU 3 2⇥bc 1 1 1 1 s1
res s1 LeakyReLU 3 4⇥bc 1 1 1 bn u2

dconv u2 LeakyReLU 4 2⇥bc 2 1 1 1 u3
SRP {d2, u3} LeaklyReLU 3 2⇥bc 1 1 1 1 s2
res s2 LeakyReLU 3 2⇥bc 1 1 1 bn u4

dconv u4 LeakyReLU 4 bc 2 1 1 1 u5
SRP {BL,BR, u5} LeaklyReLU 3 bc+6 1 1 1 1 s3
res s3 LeakyReLU 3 bc+6 1 1 1 bn u6

conv u6 - 3 3 1 1 1 1 I

# Reblurring Framework. Shared Encoder, PSF Blocks, and Decoder.

En
co

de
r

conv {I, I} LeakyReLU 3 bc 2 1 1 1 d1
res d1 LeakyReLU 3 bc 1 1 1 bn d2

conv d2 LeakyReLU 3 2⇥bc 2 1 1 1 d3
res d3 LeakyReLU 3 2⇥bc 1 1 1 bn d4

conv d4 LeakyReLU 3 4⇥bc 2 1 1 1 d5
res d5 LeakyReLU 3 4⇥bc 1 1 1 bn FI

PSF {FI,R} - {9, 1} 4⇥bc 1 {5, 1} 1 2⇥bn F̂I

D
ec

od
er

dconv F̂I LeakyReLU 4 2⇥bc 2 1 1 1 u1
res {d4, u1} LeakyReLU 3 4⇥bc 1 1 1 bn u2

dconv u2 LeakyReLU 4 2⇥bc 2 1 1 1 u3
res {d2, u3} LeakyReLU 3 2⇥bc 1 1 1 bn u4

dconv u4 LeakyReLU 4 bc 2 1 1 1 u5
res {I, I, u5} LeakyReLU 3 bc+6 1 1 1 bn u6

conv u6 - 3 3 1 1 1 1 B
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Figure 14. Comparison of image restoration performance on the DPD-blur dataset [1]. The large sharp images in the first column are
ground-truth sharp images. The small sharp images in the second column are cropped images from the green bounding box in the large
ground-truth sharp images. The blurred images in the second column are corresponding input blurry images (BL).
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Figure 15. Comparison of image restoration performance on the DPD-blur dataset [1]. The large sharp images in the first column are
ground-truth sharp images. The small sharp images in the second column are cropped images from the green bounding box in the large
ground-truth sharp images. The blurred images in the second column are corresponding input blurry images (BL).
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Figure 16. Comparison of image restoration performance on the DPD-blur dataset [1]. The large sharp images in the first column are
ground-truth sharp images. The small sharp images in the second column are cropped images from the green bounding box in the large
ground-truth sharp images. The blurred images in the second column are corresponding input blurry images (BL).
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Figure 17. Comparison of image restoration performance on the DPD-blur dataset [1]. The large sharp images in the first column are
ground-truth sharp images. The small sharp images in the second column are cropped images from the green bounding box in the large
ground-truth sharp images. The blurred images in the second column are corresponding input blurry images (BL).
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Figure 18. Comparison of image restoration performance on the DPD-blur dataset [1]. The large sharp images in the first column are
ground-truth sharp images. The small sharp images in the second column are cropped images from the green bounding box in the large
ground-truth sharp images. The blurred images in the second column are corresponding input blurry images (BL).
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Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
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