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1. Datasets
1.1. ScanNet [1]

ScanNet is a widely used indoor scene novel view syn-
thesis dataset. Since it is a real-capture dataset, we cannot
acquire ground truth images from arbitrary views. To en-
able the ScanNet dataset to support the evaluation of FVS
tasks, we design a heuristic split algorithm and split the
raw dataset into the training, interpolation, and extrapola-
tion sets. The split algorithm ensures the views in the inter-
polation set are near the training views and the extrapolation
views are significantly different from the training views.

For training image selection, we first uniformly sample
10% views from the raw image sequence for each scene
following the setting of [3]. We directly select the mid-
dle frames among training views for the interpolation set.
As for the specific extrapolation set, we manually split 6%
views from the training views. These views are less over-
lapped with the training pixels. We allocate their 8 adjacent
views together with themselves as the extrapolation views.
To better illustrate the split, we make a simplified example
with 0-100 views in the trajectory:

• Training view: 0, 10, 20, 30, 70, 80, 90, 100
• Interpolation: 5, 15, 25, 75, 85, 95
• Extrapolation: 46, 47, 48, 49, 50, 51, 52, 53, 54

The following scenes are used for evaluation: 0050 00,
0084 00, 0580 00 and 0616 00.

1.2. Barbershop

The images from ScanNet often contain motion blur,
dark borders, noise, and pose inaccuracy. These shortcom-
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Figure 1. Data split of the Barbershop dataset. The extrapola-
tion views are evenly sampled among space.

ings degrade the rendering quality of NeRFs and hinder our
diagnosis among FVS tasks. To this end, we designed a syn-
thetic dataset named Barbershop. Barbershop is a classic
open-access demo scene provided by ”Blender Animation
Studio” in blender website , which contains many small ob-
jects, complex reflection, and sizeable low-texture area. We
use Blender software to render this indoor scene with the cy-
cles engine. To generate this indoor scene dataset, we con-
vert the Barbershop to a interactive scene where users can
move and capture images freely as if capturing real scenes.
This way, we collect one trajectory with 543 images and
uniformly render 1152 images for the extrapolation set. For
the interpolation set, we uniformly select one-sixth views
among the trajectory as interpolation set and others as train-
ing set. For extrapolation views generation, we first split the
whole scene into a 4× 4× 3 grid, and then put cameras on
the grid corners. On each location on the grid corner, we
render 3× 8 = 24 images from different camera directions.
The “3” represents the cameras looking at 45 degrees diago-
nally upward, middle and 45 degrees diagonally downward.
The “8” represents the cameras looking evenly in eight di-
rections on the plane parallel to the floor, as shown in Fig. 1.

https://www.blender.org/download/demo-files/
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Figure 2. Video qualitative results. We show a continuous sequence of extrapolation results to assist evaluation. Please see the back of
the sofa which is a less observed region, and the carpet which contains high-frequency details.

2. Implementation Details
2.1. NeRFVS

View Coverage Map Our NeRFVS leverages the geom-
etry scaffold to generate view coverage maps V (Alg. 1).
Specifically, we first render the depth maps D of training
views using camera parameters and the scaffold. Then we
use the depth maps to reconstruct a point cloud P ∈ R3.
Each point Pi in P is projected to each view in the training
views and gets the corresponding coordinates (ui, vi) in the
image plane and the corresponding depth zi. Points with
(ui, vi) out of image range or zi <= 0 will be discarded.
Considering occlusion, we drop the points whose difference
between the re-projection depth zi and the rendered depth
D′

i is larger than 1e-2. Finally, we add one hit to the rounded
(ui, vi) in the V . In this manner, we obtain the view cover-
age information from the geometry scaffold. We show the
view coverage information among the four scenes in Fig. 3.

Scene0050_00 Scene0084_00 Scene0580_00 Scene0616_00

Figure 3. View coverage of the four scenes in ScanNet.

Model Architecture Our model is based on NeRF-
pytorch [9]. The frequency in positional encoding for point
positions is 10, and for view directions is 4. Unlike the
vanilla NeRF that adopts a ReLU activation to produce den-
sity σ, we choose a softplus activation instead, achieving

Algorithm 1: View Coverage Map Generation
Input : training camera projection matrixM,

geometry scaffold G, view coverage map V
1 V ← 0N×H×W ;
2 D ← rendered depth maps from G;
3 P ← reconstructed pointcloud withM and D;
4 for {Vj ,Mj , Dj} in {V,M,D} do
5 for Pi in P do
6 (ui, vi, zi)← project Pi with Mj ;
7 if (ui, vi) not in valid image region or

zi <= 0 then
8 continue;
9 end

10 D′
i ← bi-linear interpolation of Dj with

coordinate (ui, vi);
11 ∆D ← |D′

i − zi|
/* judge occlusion, ϵ = 1e− 2 */

12 if ∆D > ϵ then
13 continue;
14 end
15 (u′

i, v
′
i)← round the float (ui, vi) to be int;

16 Vj [u
′
i, v

′
i] += 1;

17 end
18 end
19 return V;

more stable optimization. In all experiments, we uniformly
sample 128 points for the coarse stage and 128 points for the
fine stage. We use the loss weights λcolor = 1, λd = 0.5,
λw = 0.1 and λc = 0.01 across all ScanNet scenes. For the
Barbershop, we use λc = 0.075 for a stronger regulariza-
tion on the color prediction. We use α = 9, λmax = 5, and
β = 0.1 in all experiments except for relative ablation.



A relaxing stage is adopted within the last 10% of the
training iterations. We only apply the Lcolor on rays whose
view coverage is larger than α in this stage. This way, we
fine-tune the fully observed regions with only the photomet-
ric loss. While on few shot regions, the variance regulariza-
tion and depth constraint are still applied.

2.2. NeRFVS (NGP)

Our NeRFVS (NGP) is mainly built on the torch-NGP
and tiny-cuda-nn [4]. Specifically, we use the 16 levels
grids with 2 dimension features per entry. The hash table
size is 219. We apply spherical harmonics encoding with 4
degrees for the view direction encoding. Since the conver-
gence of instant-NGP is much faster than vanilla NeRF, we
only use 50k iterations compared to the 200k iterations of
NeRF. With super-fast instant-NGP, our method can achieve
fast indoor scene free navigation.

3. Baseline Method Details
We compared our results with several state-of-the-art in-

door synthesis methods, and here we present the implemen-
tation details of these methods.

3.1. Dense Depth Priors [6]

We run COLMAP [7] with training images to get sparse
depth and use the officially released depth completion net-
work to compute dense depth priors, which is pre-trained
on the whole ScanNet dataset. Following the original set-
ting, we set the depth loss weight to 0.004 for ScanNet and
Barbershop scenes.

3.2. Stable View Synthesis [5]

Stable View Synthesis leverages a geometry scaffold
from the COLMAP MVS. We follow its data generation
procedure and use the training, interpolation, and extrapo-
lation images together to generate data. SVS applies a per-
ceptual loss for optimization, which is similar to the com-
putation of the LPIPS score. Thus the rendered images are
with high LPIPS scores compared to other methods.

We show more qualitative comparison results among ex-
trapolation views in Fig. 4. The images synthesized by SVS
are inconsistent with the scene, resulting in artifacts and dis-
tortions, especially in inaccurate geometry areas. Our NeR-
FVS treat the geometry scaffold as unreliable, using multi-
view consistency to assist the scene reconstruction among
fully observed regions. As for few-shot regions, we mainly
rely on the geometry priors and variance regularization. In
this manner, NeRFVS significantly reduces the inconsis-
tency, resulting in high fidelity results.

3.3. NerfingMVS [8]

NerfingMVS run COLMAP MVS with both training im-
ages and test images, which is not reasonable since test

Figure 4. Qualitative comparison with SVS. The images syn-
thesized by SVS are lower fidelity compared with ours, e.g., the
window blind in the first row is twisted.

Figure 5. Performance on few-shot regions. The wall and the
downside of the table are observed with only several times.

images are unreachable in practice. Therefore, We run
COLMAP only with training images to obtain depth priors
for its depth network’s training, which makes NerfingMVS
perform a little worse but more practical.

3.4. DS-NeRF [2]

Similar to our implementation in Dense Depth Priors,
we compute sparse depth priors with training images us-
ing COLMAP. The depth loss weight is set to 0.1 for both
ScanNet dataset and Barbershop dataset.



4. Performance on few-shot regions
We show the effectiveness of our NeRFVS on few-

shot regions (the wall and the downside of the table) com-
pared with the NeRF in Fig. 5. Our NeRFVS significantly
improve the rendering quality by reducing the ambiguity
among these regions.
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