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A. Data Preprocessing

We create the training point samples (i.e., query points)

with their ground truth displacement vectors and pre-

compute 100k points following NDF [4]. For all exper-

iments on the ShapeNet [2] dataset, we sample points in

the vicinity of the surface to capture details. Specifically,

we uniformly randomly sample a surface point q̂ on the

ground-truth mesh and move it by a displacement d sam-

pled from a Gaussian distribution d ∼ N(0,Σ)) to form

a 3D query point q = q̂ + d. We employ a diagonal co-

variance matrix Σ ∈ R
3×3 with entries Σi,i = σ. For the

training procedure, we use a subset of samples including

50k points, with 1% of samples from σ = 0.08 to learn to

regress query points far away, with 49% of samples from

σ = 0.02 to learn to regress surface distances within σ and

with 50% of samples from σ = 0.003 to learn to approxi-

mate the detailed surface boundary. The detailed data pre-

processing script and split will be released.

B. Implementation of Baseline Methods

For those baseline methods in comparison, we down-

load their publicly released codes and rerun them under the

same experimental setting as our method for a fair com-

parison. For the hyper-parameters used in these methods,

we follow the optimal values suggested in their original pa-

pers. For watertight shape reconstruction, the shapes are

pre-processed by DISN [7] and we assign inside/outside

labels to the sampled query points according to codes re-

leased by OccNet [5] and IF-Nets [3] for training. The three

comparing methods i.e., IF-Nets [3], NDF [4], GIFs [9]

take the same 3D convolution network as the backbone and

their input point clouds are all voxelized with the resolu-

tion of 1283, same as the watertight car reconstruction in

the original papers of NDF [4] and GIFS [9]. For other

non-watertight shape reconstruction, i.e., category-specific,

category-agnostic, category-unseen, and cross-domain re-

constructions, the input point clouds of the above three

comparing methods are all voxelized with the resolution

2563. We adopt the Adam optimizer for training with the

Codebook CD↓ EMD↓ F11×10−5 F12×10−5

Base
single 0.094 1.198 75.292 90.167

multi 0.085 1.197 75.372 90.266

Novel
single 0.146 1.366 79.460 91.228

multi 0.078 1.340 79.723 91.576

Table S1. Reconstruction results of our method using a multi-

head codebook and its variant using a single-head codebook for

the category-agnostic and category-unseen tasks on the ShapeNet

dataset.

lr = 10−3, (β1, β2) = (0.9, 0.999), ϵ = 10−8, and weight

decay λ = 0.

C. Effectiveness of Multi-head Codebook

In our NVF, we employ a multi-head structured code-

book to extend the feature space significantly and enhance

the codebook’s representation capacity (see Sec. 4 in our

paper for more details). To demonstrate the benefits of us-

ing a multi-head codebook, we provide a quantitative com-

parison with a single-head codebook in Tab. S1 for both

category-agnostic and category-unseen reconstruction tasks

on the ShapeNet dataset (the setting is the same as our ab-

lation study in the paper, please refer to Sec. 5 for more

details).

Specifically, we set the codebook size as 512 for our

single-head codebook. Our multi-head codebook uses 4
heads and the sub-codebook size of each head is 128, yield-

ing the total size same as that of a single-head cookbook.

The code dimensions are all 64. It is observed that the

multi-head codebook consistently achieves better perfor-

mance than the single-head codebook for all metrics. Es-

pecially, on novel class reconstruction, the CD of the multi-

head codebook almost halves that of the single-head code-

book, demonstrating the necessity of employing a multi-

head codebook.

D. Comparsion with generation with related

works.

ShapeGF [1], AutoSDF [6] and ShapeFormer [8] focus

on the 3D generation rather than our task, i.e., surface re-

1



Dataset Method CD↓ EMD↓ F11×10−5 ↑ F12×10−5 ↑

Non-watertight

Base
ShapeGF [8] 312.159 14.147 2.523 4.040

Ours 0.085 1.197 75.372 90.266

Novel
ShapeGF [8] 365.742 15.391 1.076 1.745

Ours 0.078 1.340 79.723 91.576

Watertight

Base

AutoSDF [6] 5.670 1.991 0.905 1.688

ShapeFormer [8] 0.799 1.509 47.028 67.210

Ours 0.091 1.079 78.503 91.408

Novel

AutoSDF [6] 8.193 2.256 2.270 3.895

ShapeFormer [8] 1.877 1.973 38.979 58.051

Ours 0.144 1.145 80.883 91.836

Table S2. Quantitative comparison with related works ShapeGF, AutoSDF, and ShapeFormer.

GTOursShapeGF

Figure S1. Examples of non-watertight mesh reconstruction.

construction. We add performance comparison in Tab. S2

and Fig. S1. Ours performs consistently best, while

ShapeGF [1] leaves large holes on most non-watertight

meshes and AutoSDF [6] & ShapeFormer [8] could not

work on non-watertight meshes due to their SDF represen-

tation. Note that AutoSDF is a voxelized-SDF method lim-

ited by its predefined resolution 643, leading to larger er-

rors. As for the use of gradient, ShapeGF predicts gradi-

ents to attain a Gaussian mixture model to estimate point

distribution density, while these gradients point to high-

density areas instead of the underlying surface, which is

completely different from our motivation and implemen-

tation. As for the codebook, AutoSDF and Shapeformer

utilize VQ for denoising and bridging cross-modality gaps,

different from our purpose of encoding cross-object priors.

Ours also differs in using a multi-head codebook and en-

coding the relation of query points to local geometry in each

code. Note that we use VQ as an example to demonstrate

that the differentiation-free property of NVF provides more

flexibility in model design.

E. Surface Extraction Speed

In the main manuscript, we present the inference com-

parison for obtaining distance and direction. In this regard,

the branch in GIFS [9] for distance prediction is akin to

Methods GIFs [9] Ours

Runtime 23.89s 17.74s

Table S3. Surface extraction speed comparison. The runtime are

average time cost for 100 times surface extraction.

NDF [4]. However, it reduces the time for surface extrac-

tion, by incorporating an intersection classification branch.

We present an evaluation of the overall reconstruction pro-

cess speed, encompassing surface extraction. Remarkably,

our NVF surpasses GIFS [9] by approximately 25%, even

when the latter purposely optimizes surface extraction as

shown in Tab. S3.

F. Codebook Visualization

We further provide the codebook visualization in Fig. S2

to demonstrate the information (i.e., the learned code)

stored by our codebook. We select the 1st head as an exam-

ple from our multi-head codebook to visualize 4 learned VQ

codes, in which we show all the query points using this code

and their corresponding displacements against the ground-

truth surfaces. It is observed that across different objects,

the query points corresponding to the same code display

roughly the same displacement (in both magnitude and di-

rection), which will further provide cross-object priors.

G. Explicit Deformation Visualization

In order to demonstrate that NVF could serve as both an

implicit neural function and an explicit deformation func-

tion (i.e., displacement output of the function could be di-

rectly used to deform source meshes), we provide some de-

formation results in Fig. S3, which indicates that our NVF

can directly deform the convex hull meshes of the input

point cloud to fit the surface.

H. Qualitative Visualization

Finally, We provide more visualization results in Figs. S4

to S9 to further demonstrate the reconstruction performance
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Figure S2. Visualization of four codes from the 1
st head learned

by our multi-head codebook. Each column represents a learned

code. Each row represents an object, except the last row indicates

the views (coordinate system) of the object.

of our NVF on different reconstruction tasks. Please refer

to the main paper for a detailed description of each task.
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(a) NDF (b) GIFS (c) Ours (d) GT

Figure S4. Visualization of category-specific reconstruction task on car samples from the ShapeNet dataset.



(c) NDF (d) GIFS (e) Ours (f) GT(b) IF-Net(a) OccNet

Figure S5. Visualization of category-agnostic reconstruction task on watertight shapes from the ShapeNet dataset.

(c) NDF (d) GIFS (e) Ours (f) GT(b) IF-Net(a) OccNet

Figure S6. Visualization of category-unseen reconstruction task on watertight shapes from the ShapeNet dataset.



(a) NDF (b) GIFS (c) Ours (d) GT

Figure S7. Visualization of category-agnostic reconstruction task on non-watertight shapes from the ShapeNet dataset.



(a) NDF (b) GIFS (c) Ours (d) GT

Figure S8. Visualization of category-unseen reconstruction task on non-watertight shapes from the ShapeNet dataset.



(a) NDF (b) GIFS (c) Ours (d) GT

Figure S9. Visualization of cross-domain reconstruction task on the MGN dataset. All models are trained based on the base classes from

the ShapeNet dataset, and then evaluated on the MGN dataset.


