
Supplementary Material
This supplementary material contains the following sec-

tions: Sec. A shows the attention layer in the point-voxel
Transformer; Sec. B reports more experimental results;
Sec. C presents visualization results on the Waymo dataset.

A. Attention Layer
In this section, we show Attention(Fs,Fquery,Ps,Pquery)

and use the single-head version for clarity. Given matrices
of content queries Fquery ∈ Rm×d, features of generated
tokens Fs ∈ Rk×d, reference points Pquery ∈ Rm×3, and
coordinates of generated tokens Ps ∈ Rk×3, we first trans-
form the input features to query Q, key K, and value V :

Q = ϕq(Fquery), K = ϕk(Fs), V = ϕv(Fs), (1)

where ϕq , ϕk, and ϕv are linear layers. To make better use
of the position information, we adopt the contextual rela-
tive positional encoding [1]. Specifically, we map the rela-
tive coordinates between the query and key to the position
encoding:

Su,v,w = Pu,w
query − Pv,w

s ,

Eq = δq(S), Ek = δk(S), Ev = δv(S),
(2)

where Eq ∈ Rm×k×d, Ek ∈ Rm×k×d, and Ev ∈ Rm×k×d

are the position encoding for query, key, and value, respec-
tively, and δq , δk, and δv are MLPs with two linear lay-
ers and one ReLU nonlinearity. The position encoding per-
forms product with query and key features to obtain posi-
tional bias B ∈ Rm×k, which is added to the attention map:

Bu,v =
∑
w

Qu,w · Eu,v,w
q +

∑
w

Kv,w · Eu,v,w
k ,

Fu,v
attn = σ(

∑
w Qu,w ·Kv,w +Bu,v

√
d

),

(3)

where σ is the softmax normalization function. Then, we
add the value feature with its corresponding position en-
coding and perform a weighted sum to obtain the output
features F ∈ Rm×d:

Fu,w =
∑
v

Fu,v
attn · V v,w +

∑
v

Fu,v
attn · Eu,v,w

v . (4)

B. More Experiments
Table 1 illustrates that a 20× measured speedup can be

achieved by sampling the reduced voxels instead of the raw
points in query initialization. Table 2 shows that in the point
token generation, our implemented k-nearest neighbors and
interpolation outperform the naı̈ve PyTorch implementation
(in Figure 1) with 8× measured speedup and 100× mem-
ory reduction. Table 3 studies the effect when a different

Table 1. Comparisons of the latency when sampling on the raw
points and the reduced voxels in the query initialization.

Case Points Voxels

Latency (ms) 14.6 0.7

Table 2. Comparisons of our implemented k-nearest neighbors and
interpolation with the naı̈ve PyTorch implementation.

Methods Latency
(ms)

Memory
(GB)

Baseline 10.9 1.14
Ours 1.3 0.01

Table 3. Ablation study of the number of neighbors to interpolate
in the point token generation.

# neighbors 1 8 16

APH 64.75 65.01 64.96

Table 4. Ablation study of the number of sampled point and voxel
tokens in the point-voxel Transformer.

# tokens 64 128 256

APH 64.43 65.01 65.26

Table 5. Ablation study of the number of Transformer blocks.

# blocks 1 2 3

APH 65.01 65.03 64.86

number of neighbors is interpolated in the point token gen-
eration. Table 4 shows the influence of sampling a different
number of point and voxel tokens for each reference point
in the point-voxel Transformer. Continued performance im-
provements can be observed as the number of tokens in-
creases since more detailed information is preserved. Note
that we sample 128 point and voxel tokens in the main text
for its better performance-efficiency trade-off. Table 5 ab-
lates the number of Transformer blocks for the point-voxel
Transformer. We find that the model can achieve good per-
formance with only a single Transformer block.

C. Qualitative Results

Figure 2 illustrates the visualization of our method on
the Waymo dataset. Our model can predict highly accurate
bounding boxes for nearby objects and also handle objects
with severe occlusion, which demonstrates the high-quality
prediction results of our model.

Failure Cases. In Figure 3, we observe that small
objects, such as pedestrians, are sometimes not detected.
These objects usually occupy fewer voxels than other ob-
jects, causing them to be less likely to be sampled. In the fu-
ture, a better query initialization module could be designed
to improve the quality of the reference points to recall the
corresponding objects.
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Figure 1: The statistical plot of the (a) average and (b) maximum number of points in each ground
truth on Waymo Open Dataset for vehicle and pedestrian.
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def naive_knn_and_k_interpolate(src_xyz, tgt_xyz, tgt_feats, K):
"""
Args:

src_xyz: (N, 3)
tgt_xyz: (M, 3)
tgt_feats: (M, C)

Return:
src_feats: (N, C)

"""
# (N, M, 3) -> (N, M), memory-intensive
dist = torch.norm(src_xyz[:, None, :] - tgt_xyz[None, :, :], dim=-1)
# (N, K), time-consumption
k_dist, k_indices = torch.topk(dist, K, dim=-1, largest=False)
k_dist_recip = (1.0 / (k_dist + 1e-8))
norm = torch.sum(k_dist_recip, dim=-1, keepdim=True)
weight = k_dist_recip / torch.clamp_min(norm, min=1e-8)
# (N, K, C) -> (N, C), memory-intensive
src_feats = torch.sum(tgt_feats[k_indices] * weight[:, :, None], dim=1)
return src_feats
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Figure 1. The naı̈ve PyTorch implementation of k-nearest neighbors and interpolation in the point token aggregation.

Figure 2. Visualization of detection results on the Waymo val-
idation set. We show the raw point cloud in blue, ground truth
in green bounding boxes, our detected objects in gray bounding
boxes, and points inside our detected boxes in orange.

Figure 3. Visualization of failure cases on the Waymo dataset.
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