
A. The design choice of our method
A gesture motion is composed of a sequence of gesture

units, such as swiping hands from left to right and holding
hands at a position [7]. We design our algorithm according
to this observation, paying special attention to the construc-
tion and selection of gesture units. Specifically, due to the
good performance of VQ-VAE in quantization, we trained a
gesture VQ-VAE for 200 epochs to mine these gesture units
from the dataset, similar to existing works [7, 16, 21, 34]
[A56]. In our settings, each code corresponds to one gesture
unit which is 8 (d) frames of gesture motions. Unlike Bai-
lando [38], Gensture2Vec [A58] and VQ-Text2Sign [A57]
using position as input features, our VQ-VAE is trained with
rotation instead, which can represent the motion better. To
find gesture candidates that match a given piece of audio
and corresponding text, we quantize the audio first, because
our ablation studies in Table 2 illustrate that the Leven-
shtein distance based on discrete audio alleviates the inher-
ent asynchrony problem of gesture and audio, and achieves
better results than the non-discrete counterpart. We don’t
need to quantize the text, since it is discrete already.

In terms of audio quantization, the audio is represented
by two groups containing 320 tokens, for a total of 3202

results, or 102.4K tokens. G refers to the motion se-
quence (position, velocity, acceleration, rotation, Euler an-
gles, quaternions, etc.). We use rotation for VQ-VAE,
and rotation velocity for periodic autoencoder. For motion
matching, we first calculate Ĉa and Ĉt based on the audio
and text. We also calculate the distance between all ges-
ture codes in codebook and the previous pose code g−1 to
obtain Ĉg for motion coherence. Then Ĉg and Ĉa deter-
mine audio-based candidate and Ĉg and Ĉt determine text-
based candidate. The final gesture is selected according to
the continuity of the phase of the previous gesture and the
phase of the two candidate gestures.

B. Proposed Algorithm
A more detailed and procedural description of our pro-

posed QPGesture approach is shown in Algorithm 1.

C. Dataset and processing.
We chose BEAT dataset because to our knowledge it is

the largest publicly available motion capture dataset. And
we will add more results of the baseline model for compar-
ison later.

Since 2D datasets converted to 3D coordinates (pseudo
GT) are low quality that are difficult to use, we plan to add
more experiments on other motion capture datasets. Even
based on motion capture, the hand quality of most datasets
is still low [A52]. Datasets claimed with high-quality hand
motion capture were still reported to have poor hand mo-
tion, e.g., ZEGGS Dataset in [A54] and Talking With Hands

Algorithm 1: QPGesture search
Data: database contains quantized audio, quantized

gesture, context, and phase
Input: a discrete text sequence

t = [t0, t1, . . . , tT ′−1], a discrete audio
sequence aq = [aq,0,aq,1, . . . ,aq,T ′−1],
initial pose code g−1, initial phase P−1,
k ∈ Z, the desired k-best candidates, control
masks M = [m0,m1, . . . ,mT ′−1]
(optional)

Output: Ĝo = [Ĝo,0, Ĝo,1 . . . , Ĝo,T ′−1]
1 t = 0, codebook size Cb

2 initialize Ĝo = [g−1], P̂o = [P−1],
3 while t in len(testing dataset) do
4 c dist = []×Cb, c a = []×Cb, c t = []×Cb

5 a dist = [∞]×Cb, t dist = [∞]×Cb

6 for code = 0; code < Cb do
7 c dist[code] =

d(Dg

(
Ĝo[−1]

)
, Dg (code))

8 for s = 0; s < len(database) do
9 for code in database[s] do

10 if ms is not masked then
11 if d(quantized audio[s][code]) <

a dist[code] then
12 a dist[code] =

d(quantized audio[s][code])
13 c a[code] =

quantized audio[s][code :
code+ stepsize− 1]

14 if
d(context[s][code]) < t dist[code]
then

15 t dist[code] =
d(context[s][code])

16 c t[code] = context[s][code :
code+ stepsize− 1]

17 Rc = relrank(c dist), Ra = relrank(a dist),
Rt = relrank(t dist)

18 Rc,a = Rc +Ra (elem. wise)
19 Rc,t = Rc +Rt (elem. wise)
20 sort Rc,a, sort its indices into Ic,a
21 sort Rc,t, sort its indices into Ic,t

22 Ĉa,t = Ic,a[k], Ĉt,t = Ic,t[k]

23 if d(concat[P̂o[−1][(Nstrid−Nphase):],P [Nstrid:]
a,t ],

concat[P̂o[−1][−Nstrid:],P [(Nphase−Nstrid):]
a,t ]) <

d(concat[P̂o[−1][(Nstrid−Nphase):],P [Nstrid:]
t,t ],

concat[P̂o[−1][−Nstrid:],P [(Nphase−Nstrid):]
t,t ])

then
24 append(Ĝo, Ĉa,t), append(P̂o, P̂a,t)

25 else
26 append(Ĝo, Ĉt,t), append(P̂o, P̂t,t)

27 return Ĝo[1 :]



in [48]. We found the hand quality of BEAT is not good
enough, especially when retargeted to an avatar, so we ig-
nore hand motion currently, and leave it to future work.

D. Details of Baseline Implementation
We used the 15 joints of the upper body(spine, spine1,

spine2, spine3, head, neck, neck1, L/R shoulders, L/R arms,
and L/R forearms, L/R hands). The gestures for all models
were at 60 frames per second (fps). Because we found that
using a pre-trained model to extract features was better than
using 1D convolution, for Trimodal [46], we used WavLM
features instead of the original 1D convolution, while align-
ing the temporal dimensions using linear interpolation. For
KNN [17], we found that changing the step size from 2
frames at the original 15 fps to 30 frames at 60 fps had
comparable results. However, we found that generating fake
gestures for training the GAN in the second stage without
overlapping frames and with 5 frames as the step size takes
several months, which is intolerable. This could be due to
1) a large amount of data in the BEAT dataset itself, 2) the
significant increase in the number of frames at 60 fps, and 3)
the time-consuming KNN search itself (the time complex-
ity of KNN search is O(n4) compared to time complexity
of O(n2) of our method using audio quantization and ges-
ture quantization). So we used mismatched gestures instead
of KNN-matched gestures with 50% likelihood from top2-
top15 in the original KNN method as the gestures used for
training the GAN in the second stage. For CaMN [31], at
the time we used the BEAT dataset, facial modality was not
yet available1, so we used text, speech, speaker identity, and
emotion as inputs to the CaMN network.

E. Objective evaluation
E.1. Evaluation Metrics

Average jerk and Acceleration. The third and second
time derivatives of the joint positions are called jerk and
acceleration [A55], respectively. The average of these two
metrics is usually used to evaluate the smoothness of the
motion. A natural system should have the average jerk and
acceleration similar to natural motion.

Canonical Correlation Analysis. The purpose of
Canonical correlation analysis (CCA) [A56] is to project
two sets of vectors into a joint subspace and then find a se-
quence of linear transformations of each set of variables that
maximizes the relationship between the transformed vari-
ables. CCA values can be used to measure the similarity be-
tween the generated gestures and the real ones. The closer
the CCA to 1, the better.

Diversity and Beat Align Score. We use the method
in [29] to calculate the beats of audio, and follow [38] to cal-

1https://pantomatrix.github.io/BEAT-Dataset/

culate the beats and diversity of gesture. The greater these
metrics are, the better.

E.2. Objective Evaluation Results

We used Trinity dataset to calculate FGD because both
Trinity and BEAT are captured with Vicon, having the same
names and number of joints, as in [46]. The results of
our additional objective evaluation compared to the exist-
ing model are shown in Table 3. From the results, we can
observe that KNN performs better than our proposed frame-
work on three metrics: average jerk, average acceleration
and global CCA. StyleGestures performs best on Average
acceleration. And Trimodal has the best performance on
CCA for each sequence. We can see that our model is the
best match to the beats of the audio, but not as good as
StyleGesture in terms of diversity. The video results show
that StyleGesture has a lot of cluttered movements, increas-
ing diversity while decreasing human-likeness and appro-
priateness.

The results of additional objective evaluations of our ab-
lation studies are shown in Table 4. When we do not use
vq-wav2vec or Levenshtein distance to measure the simi-
larity of corresponding speech of gestures, but use WavLM
and cosine similarity instead, the average jerk and aver-
age acceleration are worst. When the framework is infer-
enced without text, the average jerk, average acceleration
and CCA for each sequence are better, but the global CCA
is decreased. When the model is trained using deep gated
recurrent unit (GRU) to learn pose code instead of motion
matching, the best CCA for each sequence is obtained. For
diversity, more diverse may indicate a more clutter-free ges-
ture; and for scores, a better match with rhythm does not
indicate a better semantic match. These objective measures
are not consistent with subjective scoring.

However, this is consistent with current human subjec-
tive perception [26, 48] that speech-driven gestures lack
proper objective metrics, even for FGD [A53]. Current re-
search on speech-driven gestures prefers to conduct only
subjective evaluation [A54]. In conclusion, we would
like to emphasize that objective evaluation is currently not
particularly relevant for assessing gesture generation [26].
Subjective evaluation remains the gold standard for com-
paring gesture generation models [26].

F. User Study

Segments should be more or less complete phrases, start-
ing at the start of a word and ending at the end of a word.
We made sure there were no spoken phrases that ended on
a “cliffhanger” in the evaluation. The user study was con-
ducted by subjects with good English proficiency. The re-
ward is about 7.5 USD each person, which is about the aver-
age wage level [48]. More detailed demographic data of the



Table 3. Quantitative results on test set. Bold indicates the best metric, i.e. the one closest to the ground truth.

Name
Average

jerk
Average

acceleration
Global
CCA

CCA for
each sequence

Diversity on
feature space ↑ Diversity on

raw data space ↑ Beat Align
Score ↑

Ground Truth 996.32 ± 235.86 31.89 ± 6.80 1.000 1.00 ± 0.00 2.81 50.87 0.2064
End2End [47] 143.68 ± 10.45 7.09 ± 0.34 0.429 0.72 ± 0.14 1.45 20.82 0.2370
Trimodal [46] 157.87 ± 12.08 7.98 ± 0.53 0.807 0.74 ± 0.19 1.91 17.21 0.1221

StyleGestures [5] 280.44 ± 21.43 23.58 ± 7.21 0.953 0.71 ± 0.12 5.80 29.88 0.1871
KNN [17] 423.83 ± 100.10 40.77 ± 8.12 0.998 0.63 ± 0.21 3.23 19.42 0.2009

CaMN [31] 159.54 ± 13.99 8.96 ± 0.55 0.626 0.70 ± 0.17 2.26 18.60 0.1489
Ours 182.11 ± 18.15 9.87 ± 0.66 0.985 0.69 ± 0.14 4.05 23.13 0.2557

Table 4. Ablation studies results. ‘w/o’ is short for ‘without’. Bold indicates the best metric, i.e. the one closest to the ground truth.

Name
Average

jerk
Average

acceleration
Global
CCA

CCA for
each sequence

Diversity on
feature space ↑ Diversity on

raw data space ↑ Beat Align
Score ↑

Ground Truth (GT) 996.32 ± 235.86 31.89 ± 6.80 1.000 1.00 ± 0.00 2.81 50.87 0.2064
w/o wavvq + WavLM 168.09 ± 22.44 9.18 ± 0.81 0.993 0.69 ± 0.13 8.49 18.82 0.2098

w/o audio 176.84 ± 14.61 9.60 ± 0.50 0.993 0.68 ± 0.13 8.42 25.83 0.2001
w/o text 196.61 ± 29.34 10.68 ± 1.22 0.961 0.71 ± 0.15 7.53 15.78 0.1699

w/o phase 176.94 ± 21.41 9.60 ± 0.80 0.986 0.72 ± 0.13 4.83 15.30 0.3076
w/o motion matching
(GRU + codebook) 141.52 ± 9.65 7.56 ± 0.56 0.694 0.75 ± 0.14 10.98 12.51 0.2303

Ours 182.11 ± 18.15 9.87 ± 0.66 0.985 0.69 ± 0.14 4.05 23.13 0.2557

subjects who participated in the subjective evaluation are as
follows.

• Gender: Participants were approximately 90% were
male and 10% were female.

• Region: They were overwhelmingly residents of
mainland China, and one international student from
Malaysia. They are all students from our lab2.

• Age: All participants were between the ages of 20-28.

The questions for user study follow GENEA 2022 [48]. If
there is no overlap in the 95% confidence intervals of the
ratings between the different models, then the difference is
considered to be statistically significant.

The experiment is conducted with 23 participants with
good English proficiency to evaluate the human-likeness
and appropriateness. We use two avatar characters to test
the robustness of the results, both of them are publicly ac-
cessible. During the evaluation, we prompted the partici-
pants to ignore the finger movements and lower body move-
ments, as well as to ignore the problems in skeletal rigging
and to pay attention to the upper body gestures. For human-
likeness, it is mainly to evaluate whether the motion of the
avatar looks like the motion of a real human. In terms of
appropriateness, it is the evaluation of whether the motion
of the avatar is appropriate for the given speech. A screen-
shot of the evaluation interface used for comparison with

2https://thuhcsi.github.io/labintro.html

Figure 9. Screenshot of the parallel rating interface from the user
study for comparison with existing methods.

existing methods is presented in Figure 9. An example of



Figure 10. Screenshot of the parallel rating interface from the user
study for ablation studies.

...  jumped ... on her face ...

(a) The character makes metaphoric gestures when saying “jumped” and
deictic gestures for “face”.

... falling to the ground hoping that ...

(b) The character makes beat gestures when saying “falling”, “ground” and
“hoping”.

Figure 11. Sample results of co-speech gesture generation from
our method. Motion history images for some parts are depicted
along with the speech text.

(a) The horizontal axis indicates the 15 codes with the highest frequency,
and the vertical axis indicates the counts.

(b) 3D joints visualization of the first three codes.

Figure 12. The histogram of the first 15 code frequencies of
speaker “wayne” and 3D joints visualization results of the first
three codes.

the evaluation interface for ablation studies can be seen in
Figure 10. Participants reported that the gestures generated
by our framework contain many semantic and rhythmically
related gestures, as shown in the figure 11. Please refer to
our supplementary video for comparisons with the baseline
model and ablation studies.

G. Controllability

For the speaker “wayne”, the histogram of the first 15
code frequencies is shown in the Figure 12. It can be seen
that the most frequent code is ‘34’, which can be considered
to represent the average gesture, that is, the gesture without
speech and in silence. We visualized the three most frequent
codes: ‘34’, ‘318’ and ‘276’, and we can find that ‘318’ is
a code with a preference for right-handedness. We chose a
very typical motion clip using the right-handedness (72s to
76s of gesture “1 wayne 0 87 94”), a 4s video with a total
of 30 codes at 60FPS and 8 codebook sampling rates, of
which there are twelve ‘318’ codes. We use a code with a
preference for left-handedness instead of ‘318’ (e.g. ‘260’),
and the results are shown in our supplementary video.
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