
Reconstructing Animatable 3D Categories from Videos:
SUPPLEMENTARY MATERIAL

A. Additional Details
Shape Regularization. We apply eikonal regularization to
force the norm of the first order derivative of signed dis-
tances d to be close to 1,

Leikonal = (∥∇MLPSDF(X)∥ − 1)2. (1)

Eikonal loss forces the reconstruction to be a valid surface
and empirically improves the surface reconstruction quality.
Pose, Deformation, and Appearance Smoothness. We
would like the time-varying articulated pose, deformation,
and appearance codes {θ, ωd, ωa} to vary smoothly within a
video. To accomplish this, we make use of time-dependent
positional embeddings (similar to [11]):

ωb
t = AiF(t) (2)

where F(·) is a 1D basis of sines and cosines with linearly-
increasing frequencies at log-scale [6], and we learn sepa-
rate weight matrices Ai∈{1...,M} for each video.

B. Category Outside DensePose
We test RAC in a scenario where there is no predefined

DensePose features and skeleton.

Figure 1. Vehicle Category Reconstruction. Our method is able
to fuse videos of 365 vehicles with different appearance and shape
into a category model. From left to right, we show reconstruction
of sedans, SUVs, and vans.

Vehicle Dataset. We employ images from multiple 4K
cameras [4] that overlook urban public spaces to analyze
the flow of traffic vehicles. The data are captured for 3-
second bursts every few minutes, and only images with no-
table changes are stored. We extracted 365 car videos from

Table 1. Quantitative results on Pablo sequence. 3D Chamfer
distance (cm, ↓) is computed on the clothing region and averaged
over all frames. MPCap uses a pre-scanned personalized template.

Method MPCap* MCCap PiFuHD T2S

Chamfer 14.6 17.9 26.5 27.7 18.3

the dataset to build the category model. The dataset con-
tains wide variation in vehicle categories like pickup trucks,
construction vehicles etc on which traditional model based
approached perform poorly.
Camera Pose Initialization. As there is no DensePose
model for cars, we took a two-stage approach to first
coarsely register a few car videos with manual viewpoint
annotation and then train a single-image viewpoint network
to predict viewpoints for the rest of the videos. The cam-
era viewpoints are roughly annotated for each frame (with
around 30 degree rotation error). Annotation for a 100
frame video takes around 30 seconds. We found annotat-
ing 20 cars to be sufficient to train a viewpoint estimator
that generalizes to other cars.
Results. We show the reconstruction results of car videos
in Fig. 1. Please visit the website for more results.

C. Evaluation on Pablo Sequence
We compare with baselines on the Pablo sequence,

which is part of the public MonoPerfCap [10] dataset. Our
method optimizes the Pablo sequence together with the
rest of our 47 human videos. After differentiable rendering
optimization, we extract meshes for the Pablo sequence
and compare with the 3D ground-truth for evaluation.
Metrics. We follow the evaluation protocol of MonoCloth-
Cap [9] and compute the average point-to-surface distances
in the clothing region. The clothing region (the T-shirt and
shorts) is obtained by manual segmentation on the ground-
truth surface mesh.
Results. We show quantitative comparisons in Tab. 1 and
refer the reader to the qualitative results in Fig. 8 of the main
draft. Our method outperforms PiFuHD [5], Tex2Shape
(T2S) [1], both of which are single-view human shape pre-
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dictors trained on 3D scans of humans. Our method does
not use 3D data to train but performs test-time optimization
on 47 human videos. Our method is slightly worse than
MonoClothCap (MCCap) [9] that uses a parametric human
body model (SMPL), and worse than MonoPerfCap (MP-
Cap), which uses a prescanned template. Both paramet-
ric body model and personalized shape template provides
a strong shape prior, while our method does not rely on any
shape prior.

D. Difference from prior works
We highlight the difference from previous work in Tab. 2.

In terms of shape modeling, HyperNeRF [3] and Human-
NeRF [7] reconstruct a single scene or instance, while
learns a space of category shapes. For skeleton model-
ing, CASA [8] is optimized per-instance, while learns a
shared space over a category of skeletons (with different
bone lengths). For background modeling, NeRF++ [12] as-
sumes a static scene and does not use background to help
object segmentation and reconstruction. NerFace [2] treats
background as a static image, while we represent the back-
ground as a NeRF, which generalizes to videos captured by
a moving camera.

Table 2. Difference between prior works and .
Method Shape Motion Background 3D Data/Pose

NeRF++ N.A. N.A. NeRF No
NeRFace Instance Conditional Image No
HyperNeRF Instance Fields+Conditional N.A. No
BANMo Instance Control Points N.A. No
CASA Instance Instance Skeleton N.A. Yes
HumanNeRF Instance Instance Skeleton N.A. Yes

Category Category Skeleton NeRF No
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