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A. How about Removing Image-Level Strong Perturbations?

Perturbation Level ‘ 92 183 366 732 1464 ‘ 1/16  1/8 1/4
Image Level Alone (FixMatch) | 63.9 73.0 755 77.8 792 | 741 759 764
Feature Level Alone 660 69.6 740 773 789 | 737 745 764
Unified Levels (UniPerb) ‘ 720 758 77,5 79.3 80.1 ‘ 76.0 769 76.6

Table 1. Results (%) of only using single perturbation level, either image-level perturbations (original FixMatch) or feature-level perturbations.
These results are obtained from the Pascal dataset with DeepLabv3+ and ResNet-101. We also provide results of our UniPerb (Unified
Levels) as a reference, which unifies the two different levels of perturbations.

It has almost become a primary concern and a common practice in various semi-supervised settings to seek proper
image-level strong perturbations first. Nevertheless, this process requires many time-consuming trials and delicate selection
of different combinations. To make matters worse, in some domain-specific tasks, such as medical image analysis, it is
challenging for most practitioners to figure out appropriate ones. Therefore, a natural question raises: could we replace
image-level strong perturbations in FixMatch with a simple channel dropout perturbation at the feature level?

To validate this, we make a modification to original FixMatch that, input images are not processed by any strong data
augmentation, but their features are perturbed by a channel dropout. It can be observed from Table 1 that in most cases,
feature-level perturbation alone can indeed perform on par with original image-level strong perturbations in FixMatch, merely
slightly inferior. Hence, we believe that such simple but universal feature perturbations may serve as a promising supplement,
when image-level strong perturbations fail to work in some rarely explored scenarios.

B. Dual-Stream Feature-Level Perturbations

Method ‘ 92 183 366 732 1464 ‘ 1716 1/8 1/4

Single-Stream FP (UniPerb) | 72.0 758 77.5 793 80.1 | 76.0 769 76.6
Dual-Stream FP 734 771 785 796 804 | 762 77.0 768

Table 2. Effectiveness of dual-stream perturbations at the feature level (%). FP here denotes feature perturbation. Same as the single-stream
FP (UniPerb), the dual-stream FP also contains one stream for image-level strong perturbations.

The technique of dual-stream perturbations has been proved to be highly beneficial at the image level. Certainly, we wish
to check its effectiveness at the feature level. Thus, we attempt to strengthen our proposed UniPerb via performing twice
parallel channel dropout on the extracted features. The dual perturbed features are then sent into the decoder to produce two
final predictions for learning. The results of dual-stream feature-level perturbations are reported in Table 2. Our UniPerb



can be further boosted via maintaining dual feature perturbation streams. As discussed in Section 3.3 of our main paper,
we conjecture that dual random perturbations on the same features can also be considered to produce a pair of positive
views, thereby harvesting the merits of contrastive learning. Despite the effectiveness, we decide not to conduct dual-stream
feature perturbations in our main approach, because the current version is powerful enough, and we hope to avoid additional
computational burden during training.

C. More Image-Level Perturbation Streams

Number of image-level perturbation streams

Number of labeled images ‘
| 1 (FixMatch) 2 (DusPerb) 3 4 5 6 7

High-quality set: 732 71.8 78.1 78.8 789 791 787 784
Blended set: 662 (1/16) 74.1 75.3 754 76.1 76.0 767 763

Table 3. The performance (%) change with respect to the number of image-level strong perturbation streams.

Here, the auxiliary feature-level stream is excluded, which means the perturbation space is completely constrained at the
image level. Then, we progressively increase the number of image-level strong perturbation streams on the Pascal, and report
the corresponding performance in Table 3.

The performance is steadily improved as the number of strong views is increased to a certain number. But if we continue to
increase beyond it, then the performance might drop a little. The results indicate that, two or three strong views are already
enough to fully probe the original image-level perturbation space. Excessive strong views might cause the model to struggle in
learning every single view.

D. Limitations, Discussions, and Future Works

In our UniMatch, a confidence threshold is primarily set to suppress potentially incorrect pseudo labels. In some challenging
scenarios, e.g. COCO, however, we observe that around 15% pixels are discarded during the learning course. Therefore, how
to make full use of these uncertain pixels and meantime avoid error accumulation will be a promising direction to further
facilitate current semi-supervised algorithms. This may also enable our model to be more robust to different thresholds.

Moreover, our framework, along with its precedents, such as the FixMatch serials [1-3,5] and UDA [4], heavily relies on the
pseudo labeling quality on unlabeled images. In case yielded pseudo labels are poor, it would be hard for our semi-supervised
learner to mine meaningful knowledge from unlabeled images. Therefore, if the class distribution is highly imbalanced,
the model will be gradually biased to majority classes during training and pseudo labeling, making the minority classes
worse and worse. In addition, on common benchmarks, the domain gap between labeled and unlabeled images is rarely
considered. However, in real worlds, the abundant unlabeled images can not share exactly the same domain as labeled ones.
The semi-supervised learner could benefit from more unlabeled images if domain shift is well addressed.

Last but not least, existing academic settings in semi-supervised classification/segmentation/detection prefer to restricting
labeled images to an extremely low proportion, e.g. only providing 40 labels on the CIFAR-10 and 92 labeled images on the
Pascal. Nevertheless, considering most real-world demands, it might be more practical to assume labeled images is in the tens
of thousands, while unlabeled images are even more, might in millions. Actually, a prior work [6] already explored such a
setting, but it is expected to be further improved, both in accuracy and training efficiency.

We leave the aforementioned four problems, namely 1) how to fully exploit uncertain pixels, 2) class imbalance in pseudo
labeling, 3) domain shift in pseudo labeling, and 4) how to effectively benefit from millions of unlabeled samples together
with considerable labeled ones, to our future works.
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