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The supplementary material contains: 1) Additional
quantitative comparisons between TopDiG and other ap-
proaches; 2) Comparison of attentive maps produced by d-
ifferent methods; 3) Additional visual comparisons between
TopDiG and other approaches.

1. Additional Quantitative Comparisons
To further evaluate TopDiG, we provide additional quan-

titative comparisons with classic or recent relevant ap-
proaches. For segmentation-based methods, we evaluate 12
pure semantic segmentation models on both polygon-shape
and line-shape targets. We also evaluate a classic building
extraction model named Frame field [5] on polygon-shape
targets. In terms of contour-based approaches, two influen-
tial workflows called Curve-GCN [8] and Deep Snake [10]
are evaluated on polygon-shape targets. For graph genera-
tion methods, we select Enhanced-iCurb [13] since it focus-
es on line-shape targets.

1.1. Compare with Segmentation-based Method

We compare TopDiG with a few of segmentation-based
methods on Inria and Massachusetts. In terms of Inria
(Table 1), TopDiG reports score of approximately 85%
mIoUmask with respect to pixel-wise metrics. It surpass-
es all those segmentation-based methods with at least 1%
mIoUtopo and 3% APLS regarding topology-wise met-
rics. For Massachusetts (Figure 2), TogDiG outperform-
s achieves highest mIoUtopo and APLS with scores of
71% and 60%. Visual examples in Figure 2 and Figure 3
clearly show that segmentation-based methods require post-
processing to obtain topology from masks and suffer from
low quality topological graphs.

1.2. Compare with Contour-based Method

Quantitative comparisons are conducted between
TopDiG and two classic contour-based approaches,namely
Deep Snake and Curve-GCN, on Inria dataset. As shown
in Table 1, TopDiG notably surpasses these two methods on
both pixel-wise and topology-wise metrics with at least 6%
mIoUmask, 4% mIoUtopo and 15% APLS. The main
drawback of contour-based methods is the unavoidable

contour initialization procedure which obstructs their appli-
cations on targets with complicated topological structures
(see image with red cross in Figure 2).

1.3. Compare with Graph Generation Method

Table 2 presents comparison between TopDiG and
graph generation approach Enhanced-iCurb. It reports that
TopDiG achieves superiority over its competitor with 13%
mIoUtopo and 22% APLS. In Figure 3, visual instances
illustrate that the iterative prediction and imitation learning
strategies employed in Enhanced-iCurb pull the extracted
roads to the road boundaries instead of central areas. By
contrast, TopDiG concentrates on centerlines of roads and
extracts reliable topological graphs.

2. Attentive Maps of Different Methods
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Figure 1. Visual comparison of attentive maps for a few ap-
proaches on polygon-shape and line-shape targets. TopDiG ob-
tains compact perception of topological components.

We visually present attentive maps in different methods
to illustrate the distinction between TopDiG and other ap-
proaches. As shown in Figure 1, segmentation-based meth-
ods BEiT and OCRNet can obtain coarse semantic attention
on topological components such as boundaries and center-
lines but they require elaborate post-processing to achieve
topological graphs. Contour-based method E2EC adopt-
s semantic segmentation model as backbone and neglects
geometric textures of polygon boundaries. Graph genera-
tion approach Enhanced-iCurb fails to obtain compact at-
tention on essential target topology. Another graph genera-
tion method PolyWorld suffers from insufficient geometir-
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Pixel-wise Metrics Topology-wise Metrics
Category Method Backbone

PAmask ↑ F1mask↑ mIoUmask↑ PAtopo↑ F1topo↑ mIoUtopo↑ APLS↑

Segmentation-based

FCN [9] [CVPR2015] ResNet-101 0.92 0.81 0.79 0.90 0.48 0.60 0.30

CCNet [6] [ICCV2019] ResNet-101 0.92 0.81 0.79 0.90 0.46 0.60 0.27

DANet [4] [CVPR2019] ResNet-101 0.92 0.80 0.79 0.90 0.47 0.60 0.29

GCNet [2] [ICCV2019] ResNet-101 0.92 0.79 0.78 0.90 0.46 0.60 0.27

EncNet [15] [CVPR2018] ResNet-101 0.92 0.80 0.79 0.90 0.46 0.59 0.29

OCRNet [14] [ECCV2020] HRNet-V2 0.92 0.81 0.79 0.89 0.47 0.60 0.30

PSPNet [16] [CVPR2017] ResNet-101 0.92 0.80 0.79 0.90 0.47 0.60 0.28

UperNet [11] [ECCV2018] ResNet-101 0.93 0.82 0.80 0.90 0.50 0.62 0.31

SegFormer [12] [Neurips2021] MIT-B5 0.93 0.82 0.81 0.90 0.50 0.62 0.33

MaskFormer [3] [Neurips2021] ResNet-101 0.93 0.83 0.81 0.90 0.52 0.62 0.34

MemoryNetV2 [7] [TPAMI2022] Swin-transformer 0.92 0.80 0.78 0.89 0.44 0.59 0.26

BEiT [1] [arXiv2021] BEiT-L 0.95 0.88 0.86 0.92 0.60 0.67 0.45

Frame Field [5] [CVPR2021] HRNet-V2 0.92 0.85 0.77 0.92 0.68 0.59 0.37

Contour-based
Curve-GCN [8] [CVPR2019] ResNet-50 0.87 0.84 0.75 0.93 0.62 0.55 0.31

Deep Snake [10] [CVPR2020] DLA 0.93 0.86 0.79 0.93 0.73 0.64 0.33

Ours TopDiG TCND 0.95 (+0) 0.91 (+0.03) 0.85 (-0.01) 0.94 (+0.01) 0.78 (+0.05) 0.68 (+0.01) 0.48 (+0.03)

Table 1. Quantitative comparisons on polygon-shape targets. We evaluate the pixel-wise and topology-wise metrics on Inria. TopDiG
achieves competitive scores on pixel-wise metrics and outperforms all other approaches on topology-wise metrics. Red and Blue represent
the top-2 scores. We use ↑ and ↑ to indicate the increases crossing all datasets.

Pixel-wise Metrics Topology-wise Metrics
Category Method Backbone

PAmask F1mask mIoUmask PAtopo↑ F1topo↑ mIoUtopo↑ APLS↑

Segmentation-based

FCN [9] [CVPR2015] ResNet-101 0.96 0.37 0.59 0.93 0.54 0.65 0.12

CCNet [6] [ICCV2019] ResNet-101 0.96 0.11 0.51 0.92 0.21 0.52 0.05

DANet [4] [CVPR2019] ResNet-101 0.96 0.17 0.53 0.92 0.29 0.54 0.06

GCNet [2] [ICCV2019] ResNet-101 0.96 0.11 0.51 0.92 0.20 0.51 0.05

EncNet [15] [CVPR2018] ResNet-101 0.96 0.12 0.51 0.92 0.22 0.52 0.05

OCRNet [14] [ECCV2020] HRNet-V2 0.96 0.33 0.58 0.92 0.45 0.61 0.11

PSPNet [16] [CVPR2017] ResNet-101 0.96 0.08 0.50 0.92 0.16 0.50 0.04

UperNet [11] [ECCV2018] ResNet-101 0.96 0.38 0.60 0.92 0.50 0.63 0.14

SegFormer [12] [Neurips2021] MIT-B5 0.96 0.36 0.59 0.93 0.49 0.63 0.10

MaskFormer [3] [Neurips2021] ResNet-101 0.88 0.36 0.57 0.80 0.37 0.51 0.56

MemoryNetV2 [7] [TPAMI2022] Swin-transformer 0.96 0.34 0.58 0.92 0.43 0.59 0.12

BEiT [1] [arXiv2021] BEiT-L 0.96 0.54 0.66 0.92 0.65 0.70 0.57

Graph generation Enhanced-iCurb [13] [LRA2021] FPN - - - 0.89 0.68 0.58 0.38

Ours TopDiG TCND - - - 0.95(+0.02) 0.80 (+0.12) 0.71 (+0.01) 0.60 (+0.03)

Table 2. Quantitative comparisons on line-shape targets. We evaluate the pixel-wise and topology-wise metrics on Masschusetts.
TopDiG obtains better topology quality than all other methods. Red and Blue represent the top-2 scores. We use ↑ to indicate the increases
crossing all datasets.

c textures when tacking relatively complicated topological
structures. By contrast, TopDiG concentrates on topologi-
cal components and perceives compact texture features.

3. Additional Visual Comparisons
We provide examples visually comparing TopDiG with

segmentation-based, contour-based and graph generation
approaches. For polygon-shape targets (Figure 2), rectan-
gles in 1st column illustrate that TopDiG can precisely de-
lineate concave building boundaries and images in 4th col-
umn show its ability of resisting against shadows. Further-
more, as demonstrated in the 5th column, TopDiG can also
obtain interior detailed outlines of a circular building.

In terms of line-shape targets (Figure 3), segmentation-
based methods suffer from severe unconsciousness, omis-
sion and jaggies (red rectangles) in obtained masks. Roads
extracted by Enhanced-iCurb tend to move towards bound-
ary areas (green rectangle in 3rd column) and can hardly
solve accumulated prediction errors (green rectangle in 2nd
column). As for PolyWorld, purple rectangles in 1st and
2nd columns release the omitted and redundancy connec-
tions. In contrast with these methods, TopDiG achieves re-
liability in aforementioned scenarios.
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Figure 2. Visual comparisons on the polygon-shape targets. These images come from the Inria dataset. Top - bottom: BEiT, OCRNet,
E2EC, PolyWorld and TopDiG. Green line: segmentation contours of buildings; Red line: simplified polygons using the DouglasPeucker
algorithm; Yellow dots: detected/sampled nodes; Cyan arrow lines: directional connections between node pairs; Red cross: no predicted
building; Orange rectangles: concave building outlines.
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Figure 3. Visual comparisons between TopDiG and other approaches on the line-shape targets. These images come from the
Massachusetts dataset. Top - bottom: BEiT, OCRNet, Enhanced-iCurb, PolyWorld and TopDiG. Blue masks: segmentation masks of
roads; Yellow dots: detected/sampled nodes; Cyan arrow/straight lines: directional/non-directional connections between node pairs; Red
rectangles: omitted or jagged roads masks; Green rectangles: typical errors of Enhanced-iCurb; Purple rectangles: omitted and redundancy
connections produced by PolyWorld. The centerlines of BEiT and OCRNet are obtained from masks by applying the DouglasPeucker
algorithm.
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