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A. More Visualization Results
In this section, we show more class activation map results based on the Grad-CAM [4] technology to verify the superiority

of our method. The results are shown in Tab. 1.



(a) Image (b) Clean (c) QualNet [2] (d) Ours

Table 1. The Grad-CAM [3] maps of different models on defocus blur images. (a) The original clean images. (b) The maps of vanilla
ResNet50 [1] model on clean images. (c) and (d) show the maps of QualNet50 [2] and our proposed method on defocus blur images with
severity level 3. The results show that our method still can focus on the salient object area without being seriously affected by corruption.
Best viewed in color.

From the figure, we can draw a conclusion that our method can still focus on the regions more relevant to the image labels
of degraded images. This proves that the features extracted by our method are independent of the image quality, that is, no
matter what the image quality is, we can learn effective feature representation for recognition.



B. Additional Ablation Study
In this section, we investigate the impact of the size of the codebook E ∈ Rn×d on the parameters and model performance.

The size is the number of features contained in the codebook, that is, the value of n. We tested codebook in three sizes, i.e.,
n = 1000, n = 10000, n = 100000, specifically. The results are shown in Tab. 2. Noted that codebook under the
Pytorch framework is implemented using the torch.nn.embedding method, and this operator temporarily does not support
the calculation of params in the torchstat library. Therefore, we have manually recalculated it and this is the correct version.

Size # Params clean ↑ mCE ↓
n = 1k 4.0× 107 76.1 45.7
n = 10k 5.8× 107 76.6 43.1
n = 100k 2.4× 108 76.6 42.9

Table 2. The influence of codebook size n on parameters and model performance.

From the table, we can see that when the size n is increased to 100000, the improvement of performance is limited, and
the number of parameters increases significantly. Therefore, we set n = 10000 in our experiments.
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